Logical Graphs • Interpretive Duality 4

Re: Peirce’s Law(1)(2)(3)(4)(5)(6)(7)
Re: Logical Graphs • Interpretive Duality • (1)(2)(3)

Last time we took up Peirce’s law, ((p \Rightarrow q) \Rightarrow p) \Rightarrow p, and saw how it might be expressed in two different ways, under the entitative and existential interpretations, respectively.  The next thing to do is see how our choice of interpretation bears on the patterns of proof we might find.  To that purpose the following table shows a pair of proofs, one of each kind, in parallel array.

\text{Peirce's Law} \stackrel{_\bullet}{} \text{Parallel Proofs}

Peirce's Law • Parallel Proofs

For convenience, the formal axioms and a few theorems of frequent use are linked below.

Resource

cc: FB | Logical GraphsLaws of Form • Mathstodon • Academia.edu
cc: Conceptual GraphsCyberneticsStructural ModelingSystems Science

Posted in Amphecks, Animata, Boolean Algebra, Boolean Functions, C.S. Peirce, Cactus Graphs, Constraint Satisfaction Problems, Deduction, Diagrammatic Reasoning, Duality, Equational Inference, Graph Theory, Interpretive Duality, Laws of Form, Logic, Logical Graphs, Mathematics, Minimal Negation Operators, Model Theory, Painted Cacti, Proof Theory, Propositional Calculus, Propositional Equation Reasoning Systems, Spencer Brown, Visualization | Tagged , , , , , , , , , , , , , , , , , , , , , , , , | 4 Comments

Logical Graphs • Interpretive Duality 3

Re: Peirce’s Law(1)(2)(3)(4)(5)(6)(7)
Re: Logical Graphs • Interpretive Duality • (1)(2)

To see how our choice of interpretation bears on cases beyond the bare minimum let us start with the familiar example of Peirce’s law, commonly expressed in the following form.

((p \Rightarrow q) \Rightarrow p) \Rightarrow p

The following two formal equations show how Peirce’s law may be expressed in terms of logical graphs, operating under the entitative and existential interpretations, respectively.

\text{Peirce's Law} \stackrel{_\bullet}{} \text{Dual Graphs}

Peirce's Law • Dual Graphs

cc: FB | Logical GraphsLaws of Form • Mathstodon • Academia.edu
cc: Conceptual GraphsCyberneticsStructural ModelingSystems Science

Posted in Amphecks, Animata, Boolean Algebra, Boolean Functions, C.S. Peirce, Cactus Graphs, Constraint Satisfaction Problems, Deduction, Diagrammatic Reasoning, Duality, Equational Inference, Graph Theory, Interpretive Duality, Laws of Form, Logic, Logical Graphs, Mathematics, Minimal Negation Operators, Model Theory, Painted Cacti, Proof Theory, Propositional Calculus, Propositional Equation Reasoning Systems, Spencer Brown, Visualization | Tagged , , , , , , , , , , , , , , , , , , , , , , , , | 5 Comments

Logical Graphs • Interpretive Duality 2

A logical concept represented by a boolean variable has its extension, the cases it covers in a designated universe of discourse, and its comprehension (or intension), the properties it implies in a designated hierarchy of predicates.  The formulas and graphs tabulated in previous posts are well-adapted to articulate the syntactic and intensional aspects of propositional logic.  But their very tailoring to those tasks tends to slight the extensional and therefore empirical applications of logic.  Venn diagrams, despite their unwieldiness as the number of logical dimensions increases, are indispensable in providing the visual intuition with a solid grounding in the extensions of logical concepts.  All that makes it worthwhile to reset our table of boolean functions on two variables to include the corresponding venn diagrams.

\text{Venn Diagrams and Logical Graphs on Two Variables}

Venn Diagrams and Logical Graphs on Two Variables

cc: FB | Logical GraphsLaws of Form • Mathstodon • Academia.edu
cc: Conceptual GraphsCyberneticsStructural ModelingSystems Science

Posted in Amphecks, Animata, Boolean Algebra, Boolean Functions, C.S. Peirce, Cactus Graphs, Constraint Satisfaction Problems, Deduction, Diagrammatic Reasoning, Duality, Equational Inference, Graph Theory, Interpretive Duality, Laws of Form, Logic, Logical Graphs, Mathematics, Minimal Negation Operators, Model Theory, Painted Cacti, Proof Theory, Propositional Calculus, Propositional Equation Reasoning Systems, Spencer Brown, Visualization | Tagged , , , , , , , , , , , , , , , , , , , , , , , , | 6 Comments

Logical Graphs • Interpretive Duality 1

The duality between Entitative and Existential interpretations of logical graphs is a good example of a mathematical symmetry, in this case a symmetry of order two.  Symmetries of this and higher orders give us conceptual handles on excess complexity in the manifold of sensuous impressions, making it well worth the effort to seek them out and grasp them where we find them.

Both Peirce and Spencer Brown understood the significance of the mathematical unity underlying the dual interpretation of logical graphs.  Peirce began with the Entitative option and later switched to the Existential choice while Spencer Brown exercised the Entitative option in his Laws of Form.

In that vein, here’s a Rosetta Stone to give us a grounding in the relationship between boolean functions and our two readings of logical graphs.

\text{Boolean Functions on Two Variables}

Boolean Functions on Two Variables

cc: FB | Logical GraphsLaws of Form • Mathstodon • Academia.edu
cc: Conceptual GraphsCyberneticsStructural ModelingSystems Science

Posted in Amphecks, Animata, Boolean Algebra, Boolean Functions, C.S. Peirce, Cactus Graphs, Constraint Satisfaction Problems, Deduction, Diagrammatic Reasoning, Duality, Equational Inference, Graph Theory, Interpretive Duality, Laws of Form, Logic, Logical Graphs, Mathematics, Minimal Negation Operators, Model Theory, Painted Cacti, Proof Theory, Propositional Calculus, Propositional Equation Reasoning Systems, Spencer Brown, Visualization | Tagged , , , , , , , , , , , , , , , , , , , , , , , , | 7 Comments

Peirce’s Law • 7

Equational Form (concl.)

The following animation replays the steps of the proof.

Peirce's Law : Strong Form • Proof Animation

Reference

  • Peirce, Charles Sanders (1885), “On the Algebra of Logic : A Contribution to the Philosophy of Notation”, American Journal of Mathematics 7 (1885), 180–202.  Reprinted (CP 3.359–403), (CE 5, 162–190).

Resources

cc: FB | Logical GraphsLaws of FormMathstodonAcademia.edu
cc: Conceptual GraphsCyberneticsStructural ModelingSystems Science

Posted in C.S. Peirce, Equational Inference, Laws of Form, Logic, Logical Graphs, Mathematics, Peirce, Peirce's Law, Proof Theory, Propositional Calculus, Propositions As Types Analogy, Semiotics, Spencer Brown, Visualization | Tagged , , , , , , , , , , , , , | 9 Comments

Peirce’s Law • 6

Equational Form (cont.)

Using the axioms and theorems listed in the entries on logical graphs, the equational form of Peirce’s law may be proved in the following manner.

Peirce's Law : Strong Form • Proof

Reference

  • Peirce, Charles Sanders (1885), “On the Algebra of Logic : A Contribution to the Philosophy of Notation”, American Journal of Mathematics 7 (1885), 180–202.  Reprinted (CP 3.359–403), (CE 5, 162–190).

Resources

cc: FB | Logical GraphsLaws of FormMathstodonAcademia.edu
cc: Conceptual GraphsCyberneticsStructural ModelingSystems Science

Posted in C.S. Peirce, Equational Inference, Laws of Form, Logic, Logical Graphs, Mathematics, Peirce, Peirce's Law, Proof Theory, Propositional Calculus, Propositions As Types Analogy, Semiotics, Spencer Brown, Visualization | Tagged , , , , , , , , , , , , , | 9 Comments

Peirce’s Law • 5

Equational Form

A stronger form of Peirce’s law also holds, in which the final implication is observed to be reversible, resulting in the following equivalence.

((p \Rightarrow q) \Rightarrow p) \Leftrightarrow p

The converse implication p \Rightarrow ((p \Rightarrow q) \Rightarrow p) is clear enough on general principles, since p \Rightarrow (r \Rightarrow p) holds for any proposition r.

Representing propositions as logical graphs under the existential interpretation, the strong form of Peirce’s law is expressed by the following equation.

Peirce's Law : Strong Form

Reference

  • Peirce, Charles Sanders (1885), “On the Algebra of Logic : A Contribution to the Philosophy of Notation”, American Journal of Mathematics 7 (1885), 180–202.  Reprinted (CP 3.359–403), (CE 5, 162–190).

Resources

cc: FB | Logical GraphsLaws of FormMathstodonAcademia.edu
cc: Conceptual GraphsCyberneticsStructural ModelingSystems Science

Posted in C.S. Peirce, Equational Inference, Laws of Form, Logic, Logical Graphs, Mathematics, Peirce, Peirce's Law, Proof Theory, Propositional Calculus, Propositions As Types Analogy, Semiotics, Spencer Brown, Visualization | Tagged , , , , , , , , , , , , , | 9 Comments

Peirce’s Law • 4

Proof Animation

The following animation replays the steps of the proof.

Peirce's Law • Proof Animation

Reference

  • Peirce, Charles Sanders (1885), “On the Algebra of Logic : A Contribution to the Philosophy of Notation”, American Journal of Mathematics 7 (1885), 180–202.  Reprinted (CP 3.359–403), (CE 5, 162–190).

Resources

cc: FB | Logical GraphsLaws of FormMathstodonAcademia.edu
cc: Conceptual GraphsCyberneticsStructural ModelingSystems Science

Posted in C.S. Peirce, Equational Inference, Laws of Form, Logic, Logical Graphs, Mathematics, Peirce, Peirce's Law, Proof Theory, Propositional Calculus, Propositions As Types Analogy, Semiotics, Spencer Brown, Visualization | Tagged , , , , , , , , , , , , , | 9 Comments

Peirce’s Law • 3

Graphical Proof

Using the axiom set given in the articles on logical graphs, Peirce’s law may be proved in the following manner.

Peirce's Law • Proof

Reference

  • Peirce, Charles Sanders (1885), “On the Algebra of Logic : A Contribution to the Philosophy of Notation”, American Journal of Mathematics 7 (1885), 180–202.  Reprinted (CP 3.359–403), (CE 5, 162–190).

Resources

cc: FB | Logical GraphsLaws of FormMathstodonAcademia.edu
cc: Conceptual GraphsCyberneticsStructural ModelingSystems Science

Posted in C.S. Peirce, Equational Inference, Laws of Form, Logic, Logical Graphs, Mathematics, Peirce, Peirce's Law, Proof Theory, Propositional Calculus, Propositions As Types Analogy, Semiotics, Spencer Brown, Visualization | Tagged , , , , , , , , , , , , , | 9 Comments

Peirce’s Law • 2

Graphical Representation

Representing propositions in the language of logical graphs, and operating under the existential interpretation, Peirce’s law is expressed by means of the following formal equivalence or logical equation.

Peirce's Law

Reference

  • Peirce, Charles Sanders (1885), “On the Algebra of Logic : A Contribution to the Philosophy of Notation”, American Journal of Mathematics 7 (1885), 180–202.  Reprinted (CP 3.359–403), (CE 5, 162–190).

Resources

cc: FB | Logical GraphsLaws of FormMathstodonAcademia.edu
cc: Conceptual GraphsCyberneticsStructural ModelingSystems Science

Posted in C.S. Peirce, Equational Inference, Laws of Form, Logic, Logical Graphs, Mathematics, Peirce, Peirce's Law, Proof Theory, Propositional Calculus, Propositions As Types Analogy, Semiotics, Spencer Brown, Visualization | Tagged , , , , , , , , , , , , , | 9 Comments