Tag Archives: Graph Theory

Survey of Differential Logic • 5

This is a Survey of work in progress on Differential Logic, resources under development toward a more systematic treatment. Differential logic is the component of logic whose object is the description of variation — the aspects of change, difference, distribution, … Continue reading

Posted in Amphecks, Animata, Boolean Algebra, Boolean Functions, C.S. Peirce, Cactus Graphs, Category Theory, Change, Cybernetics, Differential Analytic Turing Automata, Differential Calculus, Differential Logic, Discrete Dynamics, Equational Inference, Frankl Conjecture, Functional Logic, Gradient Descent, Graph Theory, Hologrammautomaton, Indicator Functions, Inquiry Driven Systems, Leibniz, Logic, Logical Graphs, Mathematics, Minimal Negation Operators, Painted Cacti, Peirce, Propositional Calculus, Surveys, Time, Topology, Visualization, Zeroth Order Logic | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment

Relation Theory • Discussion 5

Re: Survey of Relation Theory Re: Ontolog Forum • Ravi Sharma RS: Is there also an attempt at integrating these relation concepts?  Like a meta‑model of relations? Dear Ravi, I haven’t run across the concept of a meta‑model before so … Continue reading

Posted in Algebra, Algebra of Logic, C.S. Peirce, Category Theory, Combinatorics, Discrete Mathematics, Duality, Dyadic Relations, Foundations of Mathematics, Graph Theory, Logic, Logic of Relatives, Mathematics, Peirce, Relation Theory, Semiotics, Set Theory, Sign Relational Manifolds, Sign Relations, Triadic Relations, Type Theory, Visualization | Tagged , , , , , , , , , , , , , , , , , , , , , | 1 Comment

Relation Theory • Discussion 4

Re: Survey of Relation Theory Re: Ontolog Forum • Ravi Sharma RS: Is there also an attempt at integrating these relation concepts?  Like a meta‑model of relations? Dear Ravi, Thanks for the question.  I believe I’d say yes to the … Continue reading

Posted in Algebra, Algebra of Logic, C.S. Peirce, Category Theory, Combinatorics, Discrete Mathematics, Duality, Dyadic Relations, Foundations of Mathematics, Graph Theory, Logic, Logic of Relatives, Mathematics, Peirce, Relation Theory, Semiotics, Set Theory, Sign Relational Manifolds, Sign Relations, Triadic Relations, Type Theory, Visualization | Tagged , , , , , , , , , , , , , , , , , , , , , | 1 Comment

Theme One Program • Discussion 10

Re: Mathstodon • Seamus Bradley SB: I thought of a programming language where every function can only return one type:  the return type.  The return type is just a wrapper around a struct that contains the actual return value, but … Continue reading

Posted in Algorithms, Animata, Artificial Intelligence, Boolean Functions, C.S. Peirce, Cactus Graphs, Cognition, Computation, Constraint Satisfaction Problems, Data Structures, Differential Logic, Equational Inference, Formal Languages, Graph Theory, Inquiry Driven Systems, Laws of Form, Learning Theory, Logic, Logical Graphs, Mathematics, Minimal Negation Operators, Painted Cacti, Peirce, Propositional Calculus, Semiotics, Spencer Brown, Visualization | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , | 1 Comment

Survey of Relation Theory • 6

In this Survey of blog and wiki posts on Relation Theory, relations are viewed from the perspective of combinatorics, in other words, as a topic in discrete mathematics, with special attention to finite structures and concrete set-theoretic constructions, many of … Continue reading

Posted in Algebra, Algebra of Logic, C.S. Peirce, Category Theory, Combinatorics, Discrete Mathematics, Duality, Dyadic Relations, Foundations of Mathematics, Graph Theory, Logic, Logic of Relatives, Mathematics, Peirce, Relation Theory, Semiotics, Set Theory, Sign Relational Manifolds, Sign Relations, Surveys, Triadic Relations, Triadicity, Type Theory | Tagged , , , , , , , , , , , , , , , , , , , , , , | 2 Comments

Survey of Theme One Program • 5

This is a Survey of blog and wiki posts relating to the Theme One Program I worked on all through the 1980s.  The aim was to develop fundamental algorithms and data structures for integrating empirical learning with logical reasoning.  I … Continue reading

Posted in Algorithms, Animata, Artificial Intelligence, Boolean Functions, C.S. Peirce, Cactus Graphs, Cognition, Computation, Constraint Satisfaction Problems, Data Structures, Differential Logic, Equational Inference, Formal Languages, Graph Theory, Inquiry Driven Systems, Laws of Form, Learning Theory, Logic, Logical Graphs, Mathematics, Minimal Negation Operators, Painted Cacti, Peirce, Propositional Calculus, Semiotics, Spencer Brown, Visualization | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , | 4 Comments

Survey of Animated Logical Graphs • 5

This is a Survey of blog and wiki posts on Logical Graphs, encompassing several families of graph-theoretic structures originally developed by Charles S. Peirce as graphical formal languages or visual styles of syntax amenable to interpretation for logical applications. Beginnings Logical Graphs … Continue reading

Posted in Amphecks, Animata, Boolean Algebra, Boolean Functions, C.S. Peirce, Cactus Graphs, Computational Complexity, Constraint Satisfaction Problems, Differential Logic, Equational Inference, Graph Theory, Laws of Form, Logic, Logical Graphs, Mathematics, Minimal Negation Operators, Model Theory, Painted Cacti, Peirce, Proof Theory, Propositional Calculus, Propositional Equation Reasoning Systems, Spencer Brown, Theorem Proving, Visualization | Tagged , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment

Differential Logic and Dynamic Systems • Overview

In modeling intelligent systems, whether we are trying to understand a natural system or engineer an artificial system, there has long been a tension or trade‑off between dynamic paradigms and symbolic paradigms.  Dynamic models take their cue from physics, using … Continue reading

Posted in Amphecks, Boolean Functions, C.S. Peirce, Cactus Graphs, Category Theory, Change, Computational Complexity, Cybernetics, Differential Analytic Turing Automata, Differential Calculus, Differential Logic, Discrete Dynamics, Dynamical Systems, Equational Inference, Functional Logic, Gradient Descent, Graph Theory, Group Theory, Hologrammautomaton, Indicator Functions, Logic, Logical Graphs, Mathematical Models, Mathematics, Minimal Negation Operators, Painted Cacti, Peirce, Propositional Calculus, Propositional Equation Reasoning Systems, Time, Visualization | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 2 Comments

Riffs and Rotes • Happy New Year 2023

No information is lost by dropping the terminal 1s.  Thus we may write the following form. The article referenced below tells how forms like these correspond to a family of digraphs called riffs and a family of graphs called rotes.  … Continue reading

Posted in Algebra, Combinatorics, Graph Theory, Group Theory, Logic, Mathematics, Number Theory, Riffs and Rotes | Tagged , , , , , , , | Leave a comment

Survey of Differential Logic • 4

This is a Survey of blog and wiki posts on Differential Logic, material I plan to develop toward a more compact and systematic account. Elements Differential Propositional Calculus Part 1 • Part 2 • Appendices • References Differential Logic • … Continue reading

Posted in Amphecks, Animata, Boolean Algebra, Boolean Functions, C.S. Peirce, Cactus Graphs, Category Theory, Change, Cybernetics, Differential Analytic Turing Automata, Differential Calculus, Differential Logic, Discrete Dynamics, Equational Inference, Frankl Conjecture, Functional Logic, Gradient Descent, Graph Theory, Hologrammautomaton, Indicator Functions, Inquiry Driven Systems, Leibniz, Logic, Logical Graphs, Mathematics, Minimal Negation Operators, Painted Cacti, Peirce, Propositional Calculus, Surveys, Time, Topology, Visualization, Zeroth Order Logic | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment