Work V

Categories

Relations

Exponentiation and Converse Implication

LaTeX

\begin{array}{ccc}  x^y & = & z \\  \hline  0^0 & = & 1 \\  0^1 & = & 0 \\  1^0 & = & 1 \\  1^1 & = & 1  \end{array}  \qquad\qquad\qquad  \begin{array}{ccc}  x\!\Leftarrow\!y & = & z \\  \hline  0\!\Leftarrow\!0 & = & 1 \\  0\!\Leftarrow\!1 & = & 0 \\  1\!\Leftarrow\!0 & = & 1 \\  1\!\Leftarrow\!1 & = & 1  \end{array}

PNG • Width:300

Exponentiation and Converse Implication

PNG • Size:Full

Exponentiation and Converse Implication

Assorted Media Tests

Peirce’s 1870 Logic Of Relatives

\mathit{l}_\dagger  {}^\dagger\mathit{s}_\ddagger  {}^\ddagger\mathrm{w}

\mathit{l}_\dagger ~  {}^\dagger\mathit{s}_\ddagger ~  {}^\ddagger\mathrm{w}

\mathit{l}_\dagger ~~  {}^\dagger\mathit{s}_\ddagger ~~  {}^\ddagger\mathrm{w}

\mathfrak{g}_{\dagger\ddagger}  {}^\dagger\mathit{o}_\parallel  {}^{\parallel\ddagger}\mathrm{h}

\mathfrak{g}_{\dagger\ddagger} ~  {}^\dagger\mathit{o}_\parallel ~  {}^{\parallel\ddagger}\mathrm{h}

\mathfrak{g}_{\dagger\ddagger} ~~  {}^\dagger\mathit{o}_\parallel ~~  {}^{\parallel\ddagger}\mathrm{h}

\mathfrak{g}_{\dagger\ddagger} ~~  {}^\dagger\mathit{t}_\parallel ~~  {}^{\parallel\ddagger}\mathrm{h}

\mathrm{m,}_\dagger ~~  {}^\dagger\mathrm{b,}_\ddagger ~~  {}^\ddagger\mathrm{r}

\mathrm{m,\!,}_{\dagger\ddagger} ~~  {}^\dagger\mathrm{b,}_\parallel ~~  {}^{\parallel\ddagger}\mathrm{r}

\mathit{l,}_{\dagger\ddagger}  {}^\dagger\mathit{s}_\parallel  {}^{\parallel\ddagger}\mathrm{w}

\mathit{l,}_{\dagger\ddagger} ~  {}^\dagger\mathit{s}_\parallel ~  {}^{\parallel\ddagger}\mathrm{w}

\mathit{l,}_{\dagger\ddagger} ~~  {}^\dagger\mathit{s}_\parallel ~~  {}^{\parallel\ddagger}\mathrm{w}

\mathfrak{g}_{\dagger\ddagger}  {}^\dagger\mathit{l}_\parallel  {}^\parallel\mathrm{w}  {}^\ddagger\mathrm{h}

\mathfrak{g}_{\dagger\ddagger} ~  {}^\dagger\mathit{l}_\parallel ~  {}^\parallel\mathrm{w} ~  {}^\ddagger\mathrm{h}

\mathfrak{g}_{\dagger\ddagger} ~~  {}^\dagger\mathit{l}_\parallel ~~  {}^\parallel\mathrm{w} ~~  {}^\ddagger\mathrm{h}

\mathbf{1}, \, {}_\dagger \quad  {}^\dagger ~ \mathit{p} ~ {}_\ddagger \quad  {}^\ddagger ~ \mathit{q} ~ {}_\parallel \quad  {}^\parallel ~ \mathbf{1}

\mathbf{1}, \, {}_\dagger \quad  {}^\dagger ~ \mathit{l} ~ {}_\ddagger \quad  {}^\ddagger ~ \mathit{s} ~ {}_\parallel \quad  {}^\parallel ~ \mathbf{1}

\mathbf{1}, \, {}_\dagger \quad  {}^\dagger ~ \mathit{l,} ~ {}_\ddagger ~ {}_\parallel \quad  {}^\ddagger ~ \mathit{s} ~ {}_\parallel \quad  {}^\parallel ~ \mathbf{1}

\mathbf{1}, \, {}_\dagger \quad  {}^\dagger ~ \mathfrak{g} ~ {}_\ddagger ~ {}_\parallel \quad  {}^\ddagger ~ \mathit{t} ~ {}_\parallel \quad  {}^\parallel ~ \mathbf{1}

\mathbf{1}, \, {}_{\dagger} \quad  {}^\dagger ~ \mathfrak{g} ~ {}_\ddagger ~ {}_\parallel \quad  {}^\ddagger ~ \mathit{l} ~ {}_\S \quad  {}^\parallel ~ \mathbf{1} \quad  {}^\S ~ \mathbf{1}

\mathbf{1}, \, {}_\dagger \quad  {}^\dagger ~ \mathfrak{g} ~ {}_\ddagger ~ {}_\parallel \quad  {}^\parallel ~ \mathbf{1} \quad  {}^\ddagger ~ \mathit{l} ~ {}_\S \quad  {}^\S ~ \mathbf{1}


LOR 1870 Figure 1
(1)

LOR 1870 Figure 2
(2)

LOR 1870 Figure 3
(3)

LOR 1870 Figure 4.1
(4.1)

LOR 1870 Figure 4.2
(4.2)

LOR 1870 Figure 4.3
(4.3)

LOR 1870 Figure 4.4
(4.4)

LOR 1870 Figure 5.1
(5.1)

LOR 1870 Figure 5.2
(5.2)

LOR 1870 Figure 5.3
(5.3)

LOR 1870 Figure 5.4
(5.4)

LOR 1870 Figure 6.1
(6.1)

LOR 1870 Figure 6.2
(6.2)

LOR 1870 Figure 6.3
(6.3)

LOR 1870 Figure 6.4
(6.4)

LOR 1870 Figure 6.5
(6.5)

LOR 1870 Figure 7
(7)

LOR 1870 Figure 8
(8)

LOR 1870 Figure 10
(10)

LOR 1870 Figure 14
(14)

LOR 1870 Figure 15
(15)

LOR 1870 Figure 17
(17)

LOR 1870 Figure 18
(18)

LOR 1870 Figure 21
(21)

LOR 1870 Figure 22
(22)

LOR 1870 Figure 23
(23)

LOR 1870 Figure 26
(26)

LOR 1870 Figure 28
(28)

LOR 1870 Figure 29
(29)

LOR 1870 Figure 30
(30)

LOR 1870 Figure 31
(31)

LOR 1870 Figure 32
(32)

LOR 1870 Figure 33
(33)

LOR 1870 Figure 34
(34)

LOR 1870 Figure 36
(36)

LOR 1870 Figure 37
(37)

LOR 1870 Figure 38
(38)

LOR 1870 Figure 39
(39)

LOR 1870 Figure 40
(40)

LOR 1870 Figure 41
(41)

LOR 1870 Figure 42
(42)

LOR 1870 Figure 43
(43)

LOR 1870 Figure 44
(44)

LOR 1870 Figure 45
(45)

LOR 1870 Figure 47
(47)

LOR 1870 Figure 49
(49)

LOR 1870 Figure 50
(50)

LOR 1870 Figure 51
(51)

LOR 1870 Figure 52
(52)

LOR 1870 Figure 53
(53)

LOR 1870 Figure 55
(55)

LOR 1870 Figure 56
(56)

Aristotle’s Paradigm


Aristotle's Paradigm

Aristotle's Paradigm

Aristotle’s Paradigm

Indicator Functions

Indicator Functions

Indicator Functions

Indicator Functions

Animation Test

Praeclarum Theorema : Proof by CAST

Praeclarum Theorema : Proof by CAST

Poem Test

Chrysalis

Memories of being held
      In closely knit spheres
And guided beyond the orbits
      Of childhood fears
Entrusted with a word
      That rustles in a breath
And warrants respect for
      The not yet beautiful

In Honor of My Parents’ Golden Wedding Anniversary
Jon Awbrey, Amherst, Massachusetts, March 21, 1996

Photo Test

Signs of Spring

Formula Tests

Formula Test 1

http://chart.apis.google.com/chart

((p ⇒ q) ⇒ p) ⇒ p

Formula Test 2

https://chart.apis.google.com/chart

((p ⇒ q) ⇒ p) ⇒ p

Formula Test 3

http://www.google.com/chart

((p ⇒ q) ⇒ p) ⇒ p

Formula Test 4

https://www.google.com/chart

((p ⇒ q) ⇒ p) ⇒ p

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.