# Work V

## Relations

### Exponentiation and Converse Implication

#### LaTeX

$\begin{array}{ccc} x^y & = & z \\ \hline 0^0 & = & 1 \\ 0^1 & = & 0 \\ 1^0 & = & 1 \\ 1^1 & = & 1 \end{array} \qquad\qquad\qquad \begin{array}{ccc} x\!\Leftarrow\!y & = & z \\ \hline 0\!\Leftarrow\!0 & = & 1 \\ 0\!\Leftarrow\!1 & = & 0 \\ 1\!\Leftarrow\!0 & = & 1 \\ 1\!\Leftarrow\!1 & = & 1 \end{array}$

## Assorted Media Tests

### Peirce’s 1870 Logic Of Relatives

$\mathit{l}_\dagger {}^\dagger\mathit{s}_\ddagger {}^\ddagger\mathrm{w}$

$\mathit{l}_\dagger ~ {}^\dagger\mathit{s}_\ddagger ~ {}^\ddagger\mathrm{w}$

$\mathit{l}_\dagger ~~ {}^\dagger\mathit{s}_\ddagger ~~ {}^\ddagger\mathrm{w}$

$\mathfrak{g}_{\dagger\ddagger} {}^\dagger\mathit{o}_\parallel {}^{\parallel\ddagger}\mathrm{h}$

$\mathfrak{g}_{\dagger\ddagger} ~ {}^\dagger\mathit{o}_\parallel ~ {}^{\parallel\ddagger}\mathrm{h}$

$\mathfrak{g}_{\dagger\ddagger} ~~ {}^\dagger\mathit{o}_\parallel ~~ {}^{\parallel\ddagger}\mathrm{h}$

$\mathfrak{g}_{\dagger\ddagger} ~~ {}^\dagger\mathit{t}_\parallel ~~ {}^{\parallel\ddagger}\mathrm{h}$

$\mathrm{m,}_\dagger ~~ {}^\dagger\mathrm{b,}_\ddagger ~~ {}^\ddagger\mathrm{r}$

$\mathrm{m,\!,}_{\dagger\ddagger} ~~ {}^\dagger\mathrm{b,}_\parallel ~~ {}^{\parallel\ddagger}\mathrm{r}$

$\mathit{l,}_{\dagger\ddagger} {}^\dagger\mathit{s}_\parallel {}^{\parallel\ddagger}\mathrm{w}$

$\mathit{l,}_{\dagger\ddagger} ~ {}^\dagger\mathit{s}_\parallel ~ {}^{\parallel\ddagger}\mathrm{w}$

$\mathit{l,}_{\dagger\ddagger} ~~ {}^\dagger\mathit{s}_\parallel ~~ {}^{\parallel\ddagger}\mathrm{w}$

$\mathfrak{g}_{\dagger\ddagger} {}^\dagger\mathit{l}_\parallel {}^\parallel\mathrm{w} {}^\ddagger\mathrm{h}$

$\mathfrak{g}_{\dagger\ddagger} ~ {}^\dagger\mathit{l}_\parallel ~ {}^\parallel\mathrm{w} ~ {}^\ddagger\mathrm{h}$

$\mathfrak{g}_{\dagger\ddagger} ~~ {}^\dagger\mathit{l}_\parallel ~~ {}^\parallel\mathrm{w} ~~ {}^\ddagger\mathrm{h}$

$\mathbf{1}, \, {}_\dagger \quad {}^\dagger ~ \mathit{p} ~ {}_\ddagger \quad {}^\ddagger ~ \mathit{q} ~ {}_\parallel \quad {}^\parallel ~ \mathbf{1}$

$\mathbf{1}, \, {}_\dagger \quad {}^\dagger ~ \mathit{l} ~ {}_\ddagger \quad {}^\ddagger ~ \mathit{s} ~ {}_\parallel \quad {}^\parallel ~ \mathbf{1}$

$\mathbf{1}, \, {}_\dagger \quad {}^\dagger ~ \mathit{l,} ~ {}_\ddagger ~ {}_\parallel \quad {}^\ddagger ~ \mathit{s} ~ {}_\parallel \quad {}^\parallel ~ \mathbf{1}$

$\mathbf{1}, \, {}_\dagger \quad {}^\dagger ~ \mathfrak{g} ~ {}_\ddagger ~ {}_\parallel \quad {}^\ddagger ~ \mathit{t} ~ {}_\parallel \quad {}^\parallel ~ \mathbf{1}$

$\mathbf{1}, \, {}_{\dagger} \quad {}^\dagger ~ \mathfrak{g} ~ {}_\ddagger ~ {}_\parallel \quad {}^\ddagger ~ \mathit{l} ~ {}_\S \quad {}^\parallel ~ \mathbf{1} \quad {}^\S ~ \mathbf{1}$

$\mathbf{1}, \, {}_\dagger \quad {}^\dagger ~ \mathfrak{g} ~ {}_\ddagger ~ {}_\parallel \quad {}^\parallel ~ \mathbf{1} \quad {}^\ddagger ~ \mathit{l} ~ {}_\S \quad {}^\S ~ \mathbf{1}$

 (1)
 (2)
 (3)
 (4.1) (4.2) (4.3) (4.4)
 (5.1) (5.2) (5.3) (5.4)
 (6.1) (6.2) (6.3) (6.4) (6.5)
 (7) (8) (10) (14) (15) (17) (18) (21) (22) (23) (26) (28) (29) (30) (31) (32) (33) (34) (36) (37) (38) (39) (40) (41) (42) (43) (44) (45) (47) (49) (50) (51) (52) (53) (55) (56)

### Indicator Functions

Indicator Functions

## Poem Test

 Chrysalis Memories of being held       In closely knit spheres And guided beyond the orbits       Of childhood fears Entrusted with a word       That rustles in a breath And warrants respect for       The not yet beautiful In Honor of My Parents’ Golden Wedding Anniversary Jon Awbrey, Amherst, Massachusetts, March 21, 1996

## Formula Tests

### Formula Test 1

http://chart.apis.google.com/chart

### Formula Test 2

https://chart.apis.google.com/chart

### Formula Test 3

http://www.google.com/chart

### Formula Test 4

https://www.google.com/chart

This site uses Akismet to reduce spam. Learn how your comment data is processed.