Tables

It looks like WordPress recently changed the way it handles \LaTeX tables, apparently deprecating the Tabular format in favor of ramping up the Array and Matrix formats.  New versions of tables that required reformatting can be found below.

Boolean Functions and Propositional Calculus

The MediaWiki versions of the Tables on this page can be found on the following page.

Differential Logic and Dynamic Systems • Appendices

Table A1. Propositional Forms on Two Variables

\begin{array}{|*{7}{c|}}  \multicolumn{7}{c}{\text{Table A1. Propositional Forms on Two Variables}} \\  \hline  L_1 & L_2 && L_3 & L_4 & L_5 & L_6 \\  \hline  && x= & 1~1~0~0 &&& \\  && y= & 1~0~1~0 &&& \\  \hline  f_{0} & f_{0000} && 0~0~0~0 & (~)    &  \text{false} & 0 \\  f_{1} & f_{0001} && 0~0~0~1 & (x)(y) &  \text{neither}~ x ~\text{nor}~ y & \lnot x \land \lnot y \\  f_{2} & f_{0010} && 0~0~1~0 & (x)~y~ &  y ~\text{without}~ x & \lnot x \land y \\  f_{3} & f_{0011} && 0~0~1~1 & (x)    &  \text{not}~ x & \lnot x \\  f_{4} & f_{0100} && 0~1~0~0 & ~x~(y) &  x ~\text{without}~ y & x \land \lnot y \\  f_{5} & f_{0101} && 0~1~0~1 & (y)    &  \text{not}~ y & \lnot y \\  f_{6} & f_{0110} && 0~1~1~0 & (x,~y) &  x ~\text{not equal to}~ y & x \ne y \\  f_{7} & f_{0111} && 0~1~1~1 & (x~~y) &  \text{not both}~ x ~\text{and}~ y & \lnot x \lor \lnot y \\  \hline  f_{8} & f_{1000} && 1~0~0~0 & ~x~~y~ &  x ~\text{and}~ y & x \land y \\  f_{9} & f_{1001} && 1~0~0~1 &((x,~y))&  x ~\text{equal to}~ y & x = y \\  f_{10}& f_{1010} && 1~0~1~0 & y      &  y & y \\  f_{11}& f_{1011} && 1~0~1~1 &(~x~(y))&  \text{not}~ x ~\text{without}~ y & x \Rightarrow y \\  f_{12}& f_{1100} && 1~1~0~0 & x      &  x & x \\  f_{13}& f_{1101} && 1~1~0~1 &((x)~y~)&  \text{not}~ y ~\text{without}~ x & x \Leftarrow y \\  f_{14}& f_{1110} && 1~1~1~0 &((x)(y))&  x ~\text{or}~ y & x \lor y \\  f_{15}& f_{1111} && 1~1~1~1 & ((~))  &  \text{true} & 1 \\  \hline  \end{array}

Table A2. Propositional Forms on Two Variables

\begin{array}{|*{7}{c|}}  \multicolumn{7}{c}{\text{Table A2. Propositional Forms on Two Variables}} \\  \hline  L_1 & L_2 && L_3 & L_4 & L_5 & L_6 \\  \hline  && x = & 1~1~0~0 &&& \\  && y = & 1~0~1~ 0&&& \\  \hline  f_{0} & f_{0000} && 0~0~0~0 & (~)    &  \text{false} & 0 \\  \hline  f_{1} & f_{0001} && 0~0~0~1 & (x)(y) &  \text{neither}~ x ~\text{nor}~ y & \lnot x \land \lnot y \\  f_{2} & f_{0010} && 0~0~1~0 & (x)~y~ &  y ~\text{without}~ x & \lnot x \land y \\  f_{4} & f_{0100} && 0~1~0~0 & ~x~(y) &  x ~\text{without}~ y & x \land \lnot y \\  f_{8} & f_{1000} && 1~0~0~0 & ~x~~y~ &  x ~\text{and}~ y & x \land y \\  \hline  f_{3} & f_{0011} && 0~0~1~1 & (x)    &  \text{not}~ x & \lnot x \\  f_{12}& f_{1100} && 1~1~0~0 &  x     &  x & x \\  \hline  f_{6} & f_{0110} && 0~1~1~0 & (x,~y) &  x ~\text{not equal to}~ y & x \ne y \\  f_{9} & f_{1001} && 1~0~0~1 &((x,~y))&  x ~\text{equal to}~ y & x = y \\  \hline  f_{5} & f_{0101} && 0~1~0~1 & (y)    &  \text{not}~ y & \lnot y \\  f_{10}& f_{1010} && 1~0~1~0 &  y     &  y & y \\  \hline  f_{7} & f_{0111} && 0~1~1~1 & (x~~y) &  \text{not both}~ x ~\text{and}~ y & \lnot x \lor \lnot y \\  f_{11}& f_{1011} && 1~0~1~1 &(~x~(y))&  \text{not}~ x ~\text{without}~ y & x \Rightarrow y \\  f_{13}& f_{1101} && 1~1~0~1 &((x)~y~)&  \text{not}~ y ~\text{without}~ x & x \Leftarrow y \\  f_{14}& f_{1110} && 1~1~1~0 &((x)(y))&  x ~\text{or}~ y & x \lor y \\  \hline  f_{15}& f_{1111} && 1~1~1~1 & ((~))  &  \text{true} & 1 \\  \hline  \end{array}

Table A3. Ef Expanded Over Differential Features

\begin{array}{|c|c||c|c|c|c|}  \multicolumn{6}{c}{\text{Table A3.}~ \mathrm{E}f ~\text{Expanded Over Differential Features}~ \{\mathrm{d}x, \mathrm{d}y\}} \\  \hline  & f &  \mathrm{T}_{11}f &  \mathrm{T}_{10}f &  \mathrm{T}_{01}f &  \mathrm{T}_{00}f \\  &&  \mathrm{E}f|_{ \mathrm{d}x \; \mathrm{d}y } &  \mathrm{E}f|_{ \mathrm{d}x \;(\mathrm{d}y)} &  \mathrm{E}f|_{(\mathrm{d}x)\; \mathrm{d}y } &  \mathrm{E}f|_{(\mathrm{d}x)  (\mathrm{d}y)} \\  \hline\hline  f_{0} & 0 & 0 & 0 & 0 & 0 \\  \hline  f_{1} & (x)(y) & ~x~~y~ & ~x~(y) & (x)~y~ & (x)(y) \\  f_{2} & (x)~y~ & ~x~(y) & ~x~~y~ & (x)(y) & (x)~y~ \\  f_{4} & ~x~(y) & (x)~y~ & (x)(y) & ~x~~y~ & ~x~(y) \\  f_{8} & ~x~~y~ & (x)(y) & (x)~y~ & ~x~(y) & ~x~~y~ \\  \hline  f_{3} & (x) &  x  &  x  & (x) & (x) \\  f_{12}&  x  & (x) & (x) &  x  &  x  \\  \hline  f_{6} &  (x,y)  &  (x,y)  & ((x,y)) & ((x,y)) &  (x,y)  \\  f_{9} & ((x,y)) & ((x,y)) &  (x,y)  &  (x,y)  & ((x,y)) \\  \hline  f_{5} & (y) &  y  & (y) &  y  & (y) \\  f_{10}&  y  & (y) &  y  & (y) &  y  \\  \hline  f_{7} & (~x~~y~) & ((x)(y)) & ((x)~y~) & (~x~(y)) & (~x~~y~) \\  f_{11}& (~x~(y)) & ((x)~y~) & ((x)(y)) & (~x~~y~) & (~x~(y)) \\  f_{13}& ((x)~y~) & (~x~(y)) & (~x~~y~) & ((x)(y)) & ((x)~y~) \\  f_{14}& ((x)(y)) & (~x~~y~) & (~x~(y)) & ((x)~y~) & ((x)(y)) \\  \hline  f_{15}& 1 & 1 & 1 & 1 & 1 \\  \hline\hline  \multicolumn{2}{|c||}{\text{Fixed Point Total}} & 4 & 4 & 4 & 16 \\  \hline  \end{array}

Table A4. Df Expanded Over Differential Features

\begin{array}{|c|c||c|c|c|c|}  \multicolumn{6}{c}{\text{Table A4.}~ \mathrm{D}f ~\text{Expanded Over Differential Features}~ \{\mathrm{d}x, \mathrm{d}y\}} \\  \hline  \text{~~~~~~} &  \text{~~~~~~} f \text{~~~~~~} &  \text{~} \mathrm{D}f|_{ \mathrm{d}x \; \mathrm{d}y } \text{~} &  \text{~} \mathrm{D}f|_{ \mathrm{d}x \;(\mathrm{d}y)} \text{~} &  \text{~} \mathrm{D}f|_{(\mathrm{d}x)\; \mathrm{d}y } \text{~} &  \text{~} \mathrm{D}f|_{(\mathrm{d}x)  (\mathrm{d}y)} \text{~} \\  \hline\hline  f_{0} & 0 & 0 & 0 & 0 & 0 \\  \hline  f_{1} & (x)(y) & ((x,y)) & (y) & (x) & 0 \\  f_{2} & (x)~y~ &  (x,y)  &  y  & (x) & 0 \\  f_{4} & ~x~(y) &  (x,y)  & (y) &  x  & 0 \\  f_{8} & ~x~~y~ & ((x,y)) &  y  &  x  & 0 \\  \hline  f_{3} & (x) & 1 & 1 & 0 & 0 \\  f_{12}&  x  & 1 & 1 & 0 & 0 \\  \hline  f_{6} &  (x,y)  & 0 & 1 & 1 & 0 \\  f_{9} & ((x,y)) & 0 & 1 & 1 & 0 \\  \hline  f_{5} & (y) & 1 & 0 & 1 & 0 \\  f_{10}&  y  & 1 & 0 & 1 & 0 \\  \hline  f_{7} & (~x~~y~) & ((x,y)) &  y  &  x  & 0 \\  f_{11}& (~x~(y)) &  (x,y)  & (y) &  x  & 0 \\  f_{13}& ((x)~y~) &  (x,y)  &  y  & (x) & 0 \\  f_{14}& ((x)(y)) & ((x,y)) & (y) & (x) & 0 \\  \hline  f_{15}& 1 & 0 & 0 & 0 & 0 \\  \hline  \end{array}

Table A5. Ef Expanded Over Ordinary Features

\begin{array}{|c|c||c|c|c|c|}  \multicolumn{6}{c}{\text{Table A5.}~ \text{E}f ~\text{Expanded Over Ordinary Features}~ \{x, y\}} \\  \hline  & f &  \text{E}f|_{ x \; y } &  \text{E}f|_{ x \;(y)} &  \text{E}f|_{(x)\; y } &  \text{E}f|_{(x)  (y)} \\  \hline\hline  f_{0} & 0 & 0 & 0 & 0 & 0 \\  \hline  f_{1} & (x)(y) &  ~\text{d}x~~\text{d}y~ &  ~\text{d}x~(\text{d}y) &  (\text{d}x)~\text{d}y~ &  (\text{d}x)(\text{d}y) \\  f_{2} & (x)~y~ &  ~\text{d}x~(\text{d}y) &  ~\text{d}x~~\text{d}y~ &  (\text{d}x)(\text{d}y) &  (\text{d}x)~\text{d}y~ \\  f_{4} & ~x~(y) &  (\text{d}x)~\text{d}y~ &  (\text{d}x)(\text{d}y) &  ~\text{d}x~~\text{d}y~ &  ~\text{d}x~(\text{d}y) \\  f_{8} & ~x~~y~ &  (\text{d}x)(\text{d}y) &  (\text{d}x)~\text{d}y~ &  ~\text{d}x~(\text{d}y) &  ~\text{d}x~~\text{d}y~ \\  \hline  f_{3}  & (x) &  \text{d}x  &  \text{d}x  & (\text{d}x) & (\text{d}x) \\  f_{12} &  x  & (\text{d}x) & (\text{d}x) &  \text{d}x  &  \text{d}x  \\  \hline  f_{6} & (x,y) &   (\text{d}x, \text{d}y)  &  ((\text{d}x, \text{d}y)) &  ((\text{d}x, \text{d}y)) &   (\text{d}x, \text{d}y) \\  f_{9} & ((x,y)) &  ((\text{d}x, \text{d}y)) &   (\text{d}x, \text{d}y)  &   (\text{d}x, \text{d}y)  &  ((\text{d}x, \text{d}y)) \\  \hline  f_{5}  & (y) &  \text{d}y  & (\text{d}y) &  \text{d}y  & (\text{d}y) \\  f_{10} &  y  & (\text{d}y) &  \text{d}y  & (\text{d}y) &  \text{d}y  \\  \hline  f_{7} & (~x~~y~) &  ((\text{d}x)(\text{d}y)) &  ((\text{d}x)~\text{d}y~) &  (~\text{d}x~(\text{d}y)) &  (~\text{d}x~~\text{d}y~) \\  f_{11} & (~x~(y)) &  ((\text{d}x)~\text{d}y~) &  ((\text{d}x)(\text{d}y)) &  (~\text{d}x~~\text{d}y~) &  (~\text{d}x~(\text{d}y)) \\  f_{13} & ((x)~y~) &  (~\text{d}x~(\text{d}y)) &  (~\text{d}x~~\text{d}y~) &  ((\text{d}x)(\text{d}y)) &  ((\text{d}x)~\text{d}y~) \\  f_{14} & ((x)(y)) &  (~\text{d}x~~\text{d}y~) &  (~\text{d}x~(\text{d}y)) &  ((\text{d}x)~\text{d}y~) &  ((\text{d}x)(\text{d}y)) \\  \hline  f_{15} & 1 & 1 & 1 & 1 & 1 \\  \hline  \end{array}

Table A6. Df Expanded Over Ordinary Features

\begin{array}{|c|c||c|c|c|c|}  \multicolumn{6}{c}{\text{Table A6.}~ \text{D}f ~\text{Expanded Over Ordinary Features}~ \{x, y\}} \\  \hline  & f &  \text{D}f|_{ x \; y } &  \text{D}f|_{ x \;(y)} &  \text{D}f|_{(x)\; y } &  \text{D}f|_{(x)  (y)} \\  \hline\hline  f_{0} & 0 & 0 & 0 & 0 & 0 \\  \hline  f_{1} & (x)(y) &  ~~\text{d}x~~\text{d}y~~ &  ~~\text{d}x~(\text{d}y)~ &  ~(\text{d}x)~\text{d}y~~ &  ((\text{d}x)(\text{d}y)) \\  f_{2} & (x)~y~ &  ~~\text{d}x~(\text{d}y)~ &  ~~\text{d}x~~\text{d}y~~ &  ((\text{d}x)(\text{d}y)) &  ~(\text{d}x)~\text{d}y~~ \\  f_{4} & ~x~(y) &  ~(\text{d}x)~\text{d}y~~ &  ((\text{d}x)(\text{d}y)) &  ~~\text{d}x~~\text{d}y~~ &  ~~\text{d}x~(\text{d}y)~ \\  f_{8} & ~x~~y~ &  ((\text{d}x)(\text{d}y)) &  ~(\text{d}x)~\text{d}y~~ &  ~~\text{d}x~(\text{d}y)~ &  ~~\text{d}x~~\text{d}y~~ \\  \hline  f_{3}  & (x) & \text{d}x & \text{d}x & \text{d}x & \text{d}x \\  f_{12} &  x  & \text{d}x & \text{d}x & \text{d}x & \text{d}x \\  \hline  f_{6} & (x,y) &  (\text{d}x, \text{d}y) &  (\text{d}x, \text{d}y) &  (\text{d}x, \text{d}y) &  (\text{d}x, \text{d}y) \\  f_{9} & ((x,y)) &  (\text{d}x, \text{d}y) &  (\text{d}x, \text{d}y) &  (\text{d}x, \text{d}y) &  (\text{d}x, \text{d}y) \\  \hline  f_{5}  & (y) & \text{d}y & \text{d}y & \text{d}y & \text{d}y \\  f_{10} &  y  & \text{d}y & \text{d}y & \text{d}y & \text{d}y \\  \hline  f_{7} & (~x~~y~) &  ((\text{d}x)(\text{d}y)) &  ~(\text{d}x)~\text{d}y~~ &  ~~\text{d}x~(\text{d}y)~ &  ~~\text{d}x~~\text{d}y~~ \\  f_{11} & (~x~(y)) &  ~(\text{d}x)~\text{d}y~~ &  ((\text{d}x)(\text{d}y)) &  ~~\text{d}x~~\text{d}y~~ &  ~~\text{d}x~(\text{d}y)~ \\  f_{13} & ((x)~y~) &  ~~\text{d}x~(\text{d}y)~ &  ~~\text{d}x~~\text{d}y~~ &  ((\text{d}x)(\text{d}y)) &  ~(\text{d}x)~\text{d}y~~ \\  f_{14} & ((x)(y)) &  ~~\text{d}x~~\text{d}y~~ &  ~~\text{d}x~(\text{d}y)~ &  ~(\text{d}x)~\text{d}y~~ &  ((\text{d}x)(\text{d}y)) \\  \hline  f_{15} & 1 & 0 & 0 & 0 & 0 \\  \hline  \end{array}

Fourier Transforms of Boolean Functions

Integer Coefficients

\begin{array}{|c||*{4}{c}|}  \multicolumn{5}{c}{\text{Table 2.1. Values of}~ \boldsymbol{\chi}_\mathcal{S}(x)} \\[4pt]  \hline  \mathcal{S} & (1, 1) & (1, 0) & (0, 1) & (0, 0) \\  \hline\hline  \varnothing & +1 & +1 & +1 & +1 \\  \{ u \}     & -1 & -1 & +1 & +1 \\  \{ v \}     & -1 & +1 & -1 & +1 \\  \{ u, v \}  & +1 & -1 & -1 & +1 \\  \hline  \end{array}
 

\begin{array}{|*{5}{c|}*{4}{r|}}  \multicolumn{9}{c}{\text{Table 2.2. Fourier Coefficients of Boolean Functions on Two Variables}}\\[4pt]  \hline  \text{~~~~~~~~} & \text{~~~~~~~~} & &  \text{~~~~~~~~} & \text{~~~~~~~~} & \text{~~~~~~~~~} &  \text{~~~~~~~~} & \text{~~~~~~~~} & \text{~~~~~~~~~} \\  L_1 & L_2 && L_3 & L_4 &  \hat{f}(\varnothing) & \hat{f}(\{u\}) & \hat{f}(\{v\}) & \hat{f}(\{u,v\}) \\  ~&~&~&~&~&~&~&~&~\\  \hline  && u = & 1~1~0~0 &&&&& \\  && v = & 1~0~1~0 &&&&& \\  \hline  f_{0} & f_{0000} && 0~0~0~0 & (~)    & 0   & 0   & 0   & 0   \\  f_{1} & f_{0001} && 0~0~0~1 & (u)(v) & 1/4 & 1/4 & 1/4 & 1/4 \\  f_{2} & f_{0010} && 0~0~1~0 & (u)~v~ & 1/4 & 1/4 &-1/4 &-1/4 \\  f_{3} & f_{0011} && 0~0~1~1 & (u)    & 1/2 & 1/2 & 0   & 0   \\  f_{4} & f_{0100} && 0~1~0~0 & ~u~(v) & 1/4 &-1/4 & 1/4 &-1/4 \\  f_{5} & f_{0101} && 0~1~0~1 & (v)    & 1/2 & 0   & 1/2 & 0   \\  f_{6} & f_{0110} && 0~1~1~0 & (u,~v) & 1/2 & 0   & 0   &-1/2 \\  f_{7} & f_{0111} && 0~1~1~1 & (u~~v) & 3/4 & 1/4 & 1/4 &-1/4 \\  \hline  f_{8} & f_{1000} && 1~0~0~0 & ~u~~v~ & 1/4 &-1/4 &-1/4 & 1/4 \\  f_{9} & f_{1001} && 1~0~0~1 &((u,~v))& 1/2 & 0   & 0   & 1/2 \\  f_{10}& f_{1010} && 1~0~1~0 &  v     & 1/2 & 0   &-1/2 & 0   \\  f_{11}& f_{1011} && 1~0~1~1 &(~u~(v))& 3/4 & 1/4 &-1/4 & 1/4 \\  f_{12}& f_{1100} && 1~1~0~0 &  u     & 1/2 &-1/2 & 0   & 0   \\  f_{13}& f_{1101} && 1~1~0~1 &((u)~v~)& 3/4 &-1/4 & 1/4 & 1/4 \\  f_{14}& f_{1110} && 1~1~1~0 &((u)(v))& 3/4 &-1/4 &-1/4 &-1/4 \\  f_{15}& f_{1111} && 1~1~1~1 & ((~))  & 1   & 0   & 0   & 0   \\  \hline  \end{array}
 

\begin{array}{|*{5}{c|}*{4}{r|}}  \multicolumn{9}{c}{\text{Table 2.3. Fourier Coefficients of Boolean Functions on Two Variables}}\\[4pt]  \hline  \text{~~~~~~~~} & \text{~~~~~~~~} & &  \text{~~~~~~~~} & \text{~~~~~~~~} & \text{~~~~~~~~~} &  \text{~~~~~~~~} & \text{~~~~~~~~} & \text{~~~~~~~~~} \\  L_1 & L_2 && L_3 & L_4 &  \hat{f}(\varnothing) & \hat{f}(\{u\}) & \hat{f}(\{v\}) & \hat{f}(\{u,v\}) \\  ~&~&~&~&~&~&~&~&~\\  \hline  && u = & 1~1~0~0 &&&&& \\  && v = & 1~0~1~0 &&&&& \\  \hline  f_{0} & f_{0000} && 0~0~0~0 & (~)    & 0   & 0   & 0   & 0   \\  \hline  f_{1} & f_{0001} && 0~0~0~1 & (u)(v) & 1/4 & 1/4 & 1/4 & 1/4 \\  f_{2} & f_{0010} && 0~0~1~0 & (u)~v~ & 1/4 & 1/4 &-1/4 &-1/4 \\  f_{4} & f_{0100} && 0~1~0~0 & ~u~(v) & 1/4 &-1/4 & 1/4 &-1/4 \\  f_{8} & f_{1000} && 1~0~0~0 & ~u~~v~ & 1/4 &-1/4 &-1/4 & 1/4 \\  \hline  f_{3} & f_{0011} && 0~0~1~1 & (u)    & 1/2 & 1/2 & 0   & 0   \\  f_{12}& f_{1100} && 1~1~0~0 &  u     & 1/2 &-1/2 & 0   & 0   \\  \hline  f_{6} & f_{0110} && 0~1~1~0 & (u,~v) & 1/2 & 0   & 0   &-1/2 \\  f_{9} & f_{1001} && 1~0~0~1 &((u,~v))& 1/2 & 0   & 0   & 1/2 \\  \hline  f_{5} & f_{0101} && 0~1~0~1 & (v)    & 1/2 & 0   & 1/2 & 0   \\  f_{10}& f_{1010} && 1~0~1~0 &  v     & 1/2 & 0   &-1/2 & 0   \\  \hline  f_{7} & f_{0111} && 0~1~1~1 & (u~~v) & 3/4 & 1/4 & 1/4 &-1/4 \\  f_{11}& f_{1011} && 1~0~1~1 &(~u~(v))& 3/4 & 1/4 &-1/4 & 1/4 \\  f_{13}& f_{1101} && 1~1~0~1 &((u)~v~)& 3/4 &-1/4 & 1/4 & 1/4 \\  f_{14}& f_{1110} && 1~1~1~0 &((u)(v))& 3/4 &-1/4 &-1/4 &-1/4 \\  \hline  f_{15}& f_{1111} && 1~1~1~1 & ((~))  & 1   & 0   & 0    & 0 \\  \hline  \end{array}

Boolean Coefficients

\begin{array}{|c||*{4}{c}|}  \multicolumn{5}{c}{\text{Table 2.1. Values of}~ g(x)} \\[4pt]  \hline  g & f_{8} & f_{4} & f_{2} & f_{1} \\  &  \texttt{ } u \texttt{  } v \texttt{ } &  \texttt{ } u \texttt{ (} v \texttt{)} &  \texttt{(} u \texttt{) } v \texttt{ } &  \texttt{(} u \texttt{)(} v \texttt{)} \\  \hline\hline  f_{7}  & 0 & 1 & 1 & 1 \\  f_{11} & 1 & 0 & 1 & 1 \\  f_{13} & 1 & 1 & 0 & 1 \\  f_{14} & 1 & 1 & 1 & 0 \\  \hline  \end{array}
 

\begin{array}{|*{9}{c|}}  \multicolumn{9}{c}{\text{Table 2.2. Fourier Coefficients of Boolean Functions on Two Variables}}\\[4pt]  \hline  \text{~~~~~~~~} & \text{~~~~~~~~} & &  \text{~~~~~~~~} & \text{~~~~~~~~} & \text{~~~~~~~~~} &  \text{~~~~~~~~} & \text{~~~~~~~~} & \text{~~~~~~~~~} \\  L_1 & L_2 && L_3 & L_4 &  \hat{f}(f_{7}) & \hat{f}(f_{11}) & \hat{f}(f_{13}) & \hat{f}(f_{14}) \\  ~&~&~&~&~&~&~&~&~\\  \hline  &&u = & 1~1~0~0 &&&&& \\  &&v = & 1~0~1~0 &&&&& \\  \hline  f_{0} & f_{0000} && 0~0~0~0 & (~)    & 0 & 0 & 0 & 0 \\  f_{1} & f_{0001} && 0~0~0~1 & (u)(v) & 1 & 1 & 1 & 0 \\  f_{2} & f_{0010} && 0~0~1~0 & (u)~v~ & 1 & 1 & 0 & 1 \\  f_{3} & f_{0011} && 0~0~1~1 & (u)    & 0 & 0 & 1 & 1 \\  f_{4} & f_{0100} && 0~1~0~0 & ~u~(v) & 1 & 0 & 1 & 1 \\  f_{5} & f_{0101} && 0~1~0~1 & (v)    & 0 & 1 & 0 & 1 \\  f_{6} & f_{0110} && 0~1~1~0 & (u,~v) & 0 & 1 & 1 & 0 \\  f_{7} & f_{0111} && 0~1~1~1 & (u~~v) & 1 & 0 & 0 & 0 \\  \hline  f_{8} & f_{1000} && 1~0~0~0 & ~u~~v~ & 0 & 1 & 1 & 1 \\  f_{9} & f_{1001} && 1~0~0~1 &((u,~v))& 1 & 0 & 0 & 1 \\  f_{10}& f_{1010} && 1~0~1~0 &  v     & 1 & 0 & 1 & 0 \\  f_{11}& f_{1011} && 1~0~1~1 &(~u~(v))& 0 & 1 & 0 & 0 \\  f_{12}& f_{1100} && 1~1~0~0 &  u     & 1 & 1 & 0 & 0 \\  f_{13}& f_{1101} && 1~1~0~1 &((u)~v~)& 0 & 0 & 1 & 0 \\  f_{14}& f_{1110} && 1~1~1~0 &((u)(v))& 0 & 0 & 0 & 1 \\  f_{15}& f_{1111} && 1~1~1~1 & ((~))  & 1 & 1 & 1 & 1 \\  \hline  \end{array}
 

\begin{array}{|*{9}{c|}}  \multicolumn{9}{c}{\text{Table 2.3. Fourier Coefficients of Boolean Functions on Two Variables}}\\[4pt]  \hline  \text{~~~~~~~~} & \text{~~~~~~~~} & &  \text{~~~~~~~~} & \text{~~~~~~~~} & \text{~~~~~~~~~} &  \text{~~~~~~~~} & \text{~~~~~~~~} & \text{~~~~~~~~~} \\  L_1 & L_2 && L_3 & L_4 &  \hat{f}(f_{7}) & \hat{f}(f_{11}) & \hat{f}(f_{13}) & \hat{f}(f_{14}) \\  ~&~&~&~&~&~&~&~&~\\  \hline  && u = & 1~1~0~0 &&&&& \\  && v = & 1~0~1~0 &&&&& \\  \hline  f_{0} & f_{0000} && 0~0~0~0 & (~)    & 0 & 0 & 0 & 0 \\  \hline  f_{1} & f_{0001} && 0~0~0~1 & (u)(v) & 1 & 1 & 1 & 0 \\  f_{2} & f_{0010} && 0~0~1~0 & (u)~v~ & 1 & 1 & 0 & 1 \\  f_{4} & f_{0100} && 0~1~0~0 & ~u~(v) & 1 & 0 & 1 & 1 \\  f_{8} & f_{1000} && 1~0~0~0 & ~u~~v~ & 0 & 1 & 1 & 1 \\  \hline  f_{3} & f_{0011} && 0~0~1~1 & (u)    & 0 & 0 & 1 & 1 \\  f_{12}& f_{1100} && 1~1~0~0 &  u     & 1 & 1 & 0 & 0 \\  \hline  f_{6} & f_{0110} && 0~1~1~0 & (u,~v) & 0 & 1 & 1 & 0 \\  f_{9} & f_{1001} && 1~0~0~1 &((u,~v))& 1 & 0 & 0 & 1 \\  \hline  f_{5} & f_{0101} && 0~1~0~1 & (v)    & 0 & 1 & 0 & 1 \\  f_{10}& f_{1010} && 1~0~1~0 &  v     & 1 & 0 & 1 & 0 \\  \hline  f_{7} & f_{0111} && 0~1~1~1 & (u~~v) & 1 & 0 & 0 & 0 \\  f_{11}& f_{1011} && 1~0~1~1 &(~u~(v))& 0 & 1 & 0 & 0 \\  f_{13}& f_{1101} && 1~1~0~1 &((u)~v~)& 0 & 0 & 1 & 0 \\  f_{14}& f_{1110} && 1~1~1~0 &((u)(v))& 0 & 0 & 0 & 1 \\  \hline  f_{15}& f_{1111} && 1~1~1~1 & ((~))  & 1 & 1 & 1 & 1 \\  \hline  \end{array}

Dyadic Relations • Divisibility

\begin{array}{|c||*{11}{c}|}  \multicolumn{12}{c}{\text{Table 1. Elementary Relatives for the ``Divisor Of" Relation}} \\[4pt]  \hline  i|j &1&2&3&4&5&6&7&8&9&10&\ldots \\  \hline\hline  1&1\!\!:\!\!1&1\!:\!2&1\!:\!3&1\!:\!4&1\!:\!5&1\!:\!6&1\!:\!7&1\!:\!8&1\!:\!9&1\!:\!10&\dots \\  2&&2\!:\!2&&2\!:\!4&&2\!:\!6&&2\!:\!8&&2\!:\!10&\dots \\  3&&&3\!:\!3&&&3\!:\!6&&&3\!:\!9&&\dots \\  4&&&&4\!:\!4&&&&4\!:\!8&&&\dots \\  5&&&&&5\!:\!5&&&&&5\!:\!10&\dots \\  6&&&&&&6\!:\!6&&&&&\dots \\  7&&&&&&&7\!:\!7&&&&\dots \\  8&&&&&&&&8\!:\!8&&&\dots \\  9&&&&&&&&&9\!:\!9&&\dots \\  10&&&&&&&&&&10\!:\!10&\dots \\  \ldots&\ldots&\ldots&\ldots&\ldots&\ldots&  \ldots&\ldots&\ldots&\ldots&\ldots&\ldots \\  \hline  \end{array}

\begin{array}{|c||*{11}{c}|}  \multicolumn{12}{c}{\text{Table 2. Logical Matrix for the ``Divisor Of" Relation}} \\[4pt]  \hline  i|j &1&2&3&4&5&6&7&8&9&10&\ldots \\  \hline\hline  1&1&1&1&1&1&1&1&1&1&1&\dots \\  2& &1& &1& &1& &1& &1&\dots \\  3& & &1& & &1& & &1& &\dots \\  4& & & &1& & & &1& & &\dots \\  5& & & & &1& & & & &1&\dots \\  6& & & & & &1& & & & &\dots \\  7& & & & & & &1& & & &\dots \\  8& & & & & & & &1& & &\dots \\  9& & & & & & & & &1& &\dots \\  10&& & & & & & & & &1&\dots \\  \ldots&\ldots&\ldots&\ldots&\ldots&\ldots&  \ldots&\ldots&\ldots&\ldots&\ldots&\ldots \\  \hline  \end{array}

Leave a comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.