# Work 4

## HTML Tables

### Relational Composition

#### HTML Markup

$\text{Table 9.} ~~ \text{Relational Composition}$
$\mathit{1}$ $\mathit{1}$ $\mathit{1}$
$L$ $X$ $Y$
$M$   $Y$ $Z$
$L \circ M$ $X$   $Z$

#### Wiki Markup

{| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%"
|+ style="height:30px" | \text{Table 9.} ~~ \text{Relational Composition}\!
|-
| style="border-right:1px solid black; border-bottom:1px solid black; width:25%" |
| style="border-bottom:1px solid black; width:25%" | \mathit{1}\!
| style="border-bottom:1px solid black; width:25%" | \mathit{1}\!
| style="border-bottom:1px solid black; width:25%" | \mathit{1}\!
|-
| style="border-right:1px solid black" | L\!
| X\!
| Y\!
|
|-
| style="border-right:1px solid black" | M\!
|
| Y\!
| Z\!
|-
| style="border-right:1px solid black" | L \circ M
| X\!
|
| Z\!
|}


### Display 1 • Markup 1

Upon the transitive character of these relations the syllogism depends, for by virtue of it, from

 $\mathrm{f} ~-\!\!\!< \mathrm{m}$ and $\mathrm{m} ~-\!\!\!< \mathrm{a}$ we can infer that $\mathrm{f} ~-\!\!\!< \mathrm{a}$

### Display 1 • Markup 2

Upon the transitive character of these relations the syllogism depends, for by virtue of it, from

 $\mathrm{f} ~-\!\!\!< \mathrm{m}$ and $\mathrm{m} ~-\!\!\!< \mathrm{a}$ we can infer that $\mathrm{f} ~-\!\!\!< \mathrm{a}$

This site uses Akismet to reduce spam. Learn how your comment data is processed.