Work 4

HTML Tables

Relational Composition

HTML Markup

\text{Table 9.} ~~ \text{Relational Composition}
  \mathit{1} \mathit{1} \mathit{1}
L X Y  
M   Y Z
L \circ M X   Z

Wiki Markup

{| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%"
|+ style="height:30px" | \text{Table 9.} ~~ \text{Relational Composition}\!
|-
| style="border-right:1px solid black; border-bottom:1px solid black; width:25%" |  
| style="border-bottom:1px solid black; width:25%" | \mathit{1}\!
| style="border-bottom:1px solid black; width:25%" | \mathit{1}\!
| style="border-bottom:1px solid black; width:25%" | \mathit{1}\!
|-
| style="border-right:1px solid black" | L\!
| X\!
| Y\!
|  
|-
| style="border-right:1px solid black" | M\!
|  
| Y\!
| Z\!
|-
| style="border-right:1px solid black" | L \circ M
| X\!
|  
| Z\!
|}

Display 1 • Markup 1

Upon the transitive character of these relations the syllogism depends, for by virtue of it, from

  \mathrm{f} ~-\!\!\!< \mathrm{m}  
and \mathrm{m} ~-\!\!\!< \mathrm{a}  
we can infer that \mathrm{f} ~-\!\!\!< \mathrm{a}  

Display 1 • Markup 2

Upon the transitive character of these relations the syllogism depends, for by virtue of it, from

\mathrm{f} ~-\!\!\!< \mathrm{m}
and \mathrm{m} ~-\!\!\!< \mathrm{a}
we can infer that \mathrm{f} ~-\!\!\!< \mathrm{a}

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s