# Work J

## Operation Tables

### Formal Operation Table (a,b) • Variant 1

#### LaTeX $\begin{array}{|c|c|c|} \hline a & b & \texttt{(} a \texttt{,} b \texttt{)} \\ \hline\hline \texttt{Space} & \texttt{Space} & \texttt{Cross} \\ \texttt{Space} & \texttt{Cross} & \texttt{Space} \\ \texttt{Cross} & \texttt{Space} & \texttt{Space} \\ \texttt{Cross} & \texttt{Cross} & \texttt{Cross} \\ \hline \end{array}$

#### PNG ### Formal Operation Table (a,b) • Variant 2

#### LaTeX $\begin{array}{|c|c|c|} \multicolumn{3}{c}{\text{Formal Operation Table} ~ \texttt{(} a \texttt{,} b \texttt{)}} \\[4pt] \hline a & b & \texttt{(} a \texttt{,} b \texttt{)} \\ \hline\hline \texttt{Space} & \texttt{Space} & \texttt{Cross} \\ \texttt{Space} & \texttt{Cross} & \texttt{Space} \\ \texttt{Cross} & \texttt{Space} & \texttt{Space} \\ \texttt{Cross} & \texttt{Cross} & \texttt{Cross} \\ \hline \end{array}$

#### PNG ### Formal Operation Table (a,b,c) • Variant 1

#### LaTeX $\begin{array}{|*{3}{c}||c|} \multicolumn{4}{c}{\text{Formal Operation Table} ~ \texttt{(} a \texttt{,} b \texttt{,} c \texttt{)}} \\[4pt] \hline a & b & c & \texttt{(}a\texttt{,}b\texttt{,}c\texttt{)} \\ \hline\hline \texttt{Space}&\texttt{Space}&\texttt{Space}&\texttt{Cross} \\ \texttt{Space}&\texttt{Space}&\texttt{Cross}&\texttt{Space} \\ \texttt{Space}&\texttt{Cross}&\texttt{Space}&\texttt{Space} \\ \texttt{Space}&\texttt{Cross}&\texttt{Cross}&\texttt{Cross} \\ \hline \texttt{Cross}&\texttt{Space}&\texttt{Space}&\texttt{Space} \\ \texttt{Cross}&\texttt{Space}&\texttt{Cross}&\texttt{Cross} \\ \texttt{Cross}&\texttt{Cross}&\texttt{Space}&\texttt{Cross} \\ \texttt{Cross}&\texttt{Cross}&\texttt{Cross}&\texttt{Cross} \\ \hline \end{array}$

#### PNG ### Formal Operation Table (a,b,c) • Variant 2

#### LaTeX $\begin{array}{|*{3}{c}||c|} \multicolumn{4}{c}{\text{Formal Operation Table} ~ \texttt{(} a \texttt{,} b \texttt{,} c \texttt{)}} \\[4pt] \hline \quad a \quad & \quad b \quad & \quad c \quad & \texttt{(}a\texttt{,}b\texttt{,}c\texttt{)} \\ \hline\hline \texttt{o} & \texttt{o} & \texttt{o} & \texttt{|} \\ \texttt{o} & \texttt{o} & \texttt{|} & \texttt{o} \\ \texttt{o} & \texttt{|} & \texttt{o} & \texttt{o} \\ \texttt{o} & \texttt{|} & \texttt{|} & \texttt{|} \\ \hline \texttt{|} & \texttt{o} & \texttt{o} & \texttt{o} \\ \texttt{|} & \texttt{o} & \texttt{|} & \texttt{|} \\ \texttt{|} & \texttt{|} & \texttt{o} & \texttt{|} \\ \texttt{|} & \texttt{|} & \texttt{|} & \texttt{|} \\ \hline \end{array}$

#### PNG ## Truth Tables

### LaTeX

The entitative interpretation of $\texttt{(} a \texttt{,} b \texttt{)}$ produces the truth table for logical equality. $\begin{array}{|c|c|c|} \multicolumn{3}{c}{\text{En} ~ \texttt{(} a \texttt{,} b \texttt{)}} \\[2pt] \hline a & b & \texttt{(} a \texttt{,} b \texttt{)} \\ \hline\hline \texttt{F} & \texttt{F} & \texttt{T} \\ \texttt{F} & \texttt{T} & \texttt{F} \\ \texttt{T} & \texttt{F} & \texttt{F} \\ \texttt{T} & \texttt{T} & \texttt{T} \\ \hline \end{array}$

The existential interpretation of $\texttt{(} a \texttt{,} b \texttt{)}$ produces the truth table for logical inequality, also known as exclusive disjunction. $\begin{array}{|c|c|c|} \multicolumn{3}{c}{\text{Ex} ~ \texttt{(} a \texttt{,} b \texttt{)}} \\[2pt] \hline a & b & \texttt{(} a \texttt{,} b \texttt{)} \\ \hline\hline \texttt{T} & \texttt{T} & \texttt{F} \\ \texttt{T} & \texttt{F} & \texttt{T} \\ \texttt{F} & \texttt{T} & \texttt{T} \\ \texttt{F} & \texttt{F} & \texttt{F} \\ \hline \end{array}$

### PNG  ## Syntactic Correspondences $\text{Form}$ $\text{String}$ $\text{Graph}$  $\texttt{(} a \texttt{)}$   $\texttt{(} a \texttt{,} b \texttt{)}$   $\texttt{(} a \texttt{,} b \texttt{,} c \texttt{)}$ ## Evaluation Rules  ## Interpretation Rules $\text{Logical Interpretations of Cactus Structures}$ $\text{Graph}$ $\text{Expression}$ $\begin{matrix} \text{Entitative} \\ \text{Interpretation} \end{matrix}$ $\begin{matrix} \text{Existential} \\ \text{Interpretation} \end{matrix}$  $~$ $\mathrm{false}$ $\mathrm{true}$  $\texttt{(} ~ \texttt{)}$ $\mathrm{true}$ $\mathrm{false}$  $x_1 \ldots x_k$ $x_1 \lor \ldots \lor x_k$ $x_1 \land \ldots \land x_k$  $\texttt{(} x_1 \texttt{,} \ldots \texttt{,} x_k \texttt{)}$ $\begin{matrix} \text{not just one of} \\[6px] x_1, \ldots, x_k \\[6px] \text{is true} \end{matrix}$ $\begin{matrix} \text{just one of} \\[6px] x_1, \ldots, x_k \\[6px] \text{is false} \end{matrix}$

#### JPG #### PNG 