Category Archives: Graph Theory

Animated Logical Graphs • 34

Re: Ontolog Forum • John Sowa Re: Peirce List • John Sowa Dear John, I can’t imagine why anyone would bother with Peirce’s logic if it’s just Frege and Russell in a different syntax, which has been the opinion I … Continue reading

Posted in Amphecks, Animata, Boolean Algebra, Boolean Functions, C.S. Peirce, Cactus Graphs, Constraint Satisfaction Problems, Deduction, Diagrammatic Reasoning, Duality, Equational Inference, Graph Theory, Laws of Form, Logic, Logical Graphs, Mathematics, Minimal Negation Operators, Model Theory, Painted Cacti, Peirce, Proof Theory, Propositional Calculus, Propositional Equation Reasoning Systems, Spencer Brown, Theorem Proving, Visualization | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment

Riffs and Rotes • 5

Re: Scott Aaronson • The Busy Beaver Frontier All my favorite integer sequences, some very fast growing, spring from the “lambda point” where graph theory, logic, and number theory meet.  My fascination with them goes back to a time when … Continue reading

Posted in Algebra, Combinatorics, Graph Theory, Group Theory, Logic, Mathematics, Number Theory, Riffs and Rotes | Tagged , , , , , , , | 2 Comments

Differential Logic, Dynamic Systems, Tangent Functors • Discussion 9

Re: FB | Systems Sciences • Kenneth Lloyd Dear Kenneth, Mulling over recent discussions put me in a pensive frame of mind and my thoughts led me back to my first encounter with category theory.  I came across the term … Continue reading

Posted in Amphecks, Boolean Functions, C.S. Peirce, Cactus Graphs, Category Theory, Cybernetics, Differential Analytic Turing Automata, Differential Calculus, Differential Logic, Discrete Dynamical Systems, Dynamical Systems, Graph Theory, Hill Climbing, Hologrammautomaton, Information Theory, Inquiry Driven Systems, Intelligent Systems, Knowledge Representation, Laws of Form, Logic, Logical Graphs, Mathematics, Minimal Negation Operators, Painted Cacti, Peirce, Propositional Calculus, Propositional Equation Reasoning Systems, Spencer Brown, Systems, Visualization | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 1 Comment

Differential Logic, Dynamic Systems, Tangent Functors • Comment 1

Seeing as how quasi-neural models and the recurring issues of logical-symbolic vs. quantitative-connectionist paradigms have come round again, as they do every dozen or twenty years or so, I thought I might refer again to work I started initially in that … Continue reading

Posted in Amphecks, Boolean Functions, C.S. Peirce, Cactus Graphs, Category Theory, Cybernetics, Differential Analytic Turing Automata, Differential Calculus, Differential Logic, Discrete Dynamical Systems, Dynamical Systems, Graph Theory, Hill Climbing, Hologrammautomaton, Information Theory, Inquiry Driven Systems, Intelligent Systems, Knowledge Representation, Laws of Form, Logic, Logical Graphs, Mathematics, Minimal Negation Operators, Painted Cacti, Peirce, Propositional Calculus, Propositional Equation Reasoning Systems, Spencer Brown, Systems, Visualization | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment

Category Theory • Comment 1

I’m deep in the middle of upgrading my intro to sign relations and I am determined to stick to it this time but there will be a phase when it’s critical to bring category theory to bear on the development.  … Continue reading

Posted in Abstraction, C.S. Peirce, Category Theory, Differential Logic, Graph Theory, Group Theory, Inquiry Driven Systems, Intelligent Systems, Knowledge Representation, Logic, Logical Graphs, Mathematics, Peirce, Peirce's Categories, Research Technology, Scientific Method, Semiotics, Set Theory, Sign Relations, Systems Theory, Triadic Relations | Tagged , , , , , , , , , , , , , , , , , , , , | Leave a comment

Animated Logical Graphs • 33

A reader’s request for more examples of animated logical graphs prompted me to look again at the User Guide for my Theme One Program, whose exposition develops a series of logical graphs increasing in complexity from extremely simple to more substantial … Continue reading

Posted in Amphecks, Animata, Boolean Algebra, Boolean Functions, C.S. Peirce, Cactus Graphs, Constraint Satisfaction Problems, Deduction, Diagrammatic Reasoning, Duality, Equational Inference, Graph Theory, Laws of Form, Logic, Logical Graphs, Mathematics, Minimal Negation Operators, Model Theory, Painted Cacti, Peirce, Proof Theory, Propositional Calculus, Propositional Equation Reasoning Systems, Spencer Brown, Theorem Proving, Visualization | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment

Differential Logic • Discussion 3

Re: R.J. Lipton • P<NP Instead of boolean circuit complexity I would look at logical graph complexity, where those logical graphs are constructed from minimal negation operators. Physics once had a frame problem (complexity of dynamic updating) long before AI … Continue reading

Posted in Amphecks, Animata, Boolean Algebra, Boolean Functions, C.S. Peirce, Cactus Graphs, Category Theory, Change, Cybernetics, Differential Analytic Turing Automata, Differential Calculus, Differential Logic, Discrete Dynamics, Equational Inference, Frankl Conjecture, Functional Logic, Gradient Descent, Graph Theory, Hologrammautomaton, Indicator Functions, Inquiry Driven Systems, Leibniz, Logic, Logical Graphs, Mathematics, Minimal Negation Operators, Painted Cacti, Peirce, Propositional Calculus, Surveys, Time, Topology, Visualization, Zeroth Order Logic | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment

Animated Logical Graphs • 32

Re: R.J. Lipton and K.W. Regan • Proof Checking Dear Dick/Ken, Here’s a place where I explore different shapes of proofs in a propositional calculus deriving from the graphical systems of Charles S. Peirce and G. Spencer Brown. Propositional Equation Reasoning Systems • Analysis … Continue reading

Posted in Amphecks, Animata, Boolean Algebra, Boolean Functions, C.S. Peirce, Cactus Graphs, Constraint Satisfaction Problems, Deduction, Diagrammatic Reasoning, Duality, Equational Inference, Graph Theory, Laws of Form, Logic, Logical Graphs, Mathematics, Minimal Negation Operators, Model Theory, Painted Cacti, Peirce, Proof Theory, Propositional Calculus, Propositional Equation Reasoning Systems, Spencer Brown, Theorem Proving, Visualization | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment

Relation Theory • Discussion 1

Re: Cybernetics • Arthur Phillips Responding to what I’ll abductively interpret as a plea for relevance from the cybernetic galley, let me give a quick review of where we are in this many-oared expedition. Our reading of Ashby (see Survey … Continue reading

Posted in Algebra, Algebra of Logic, C.S. Peirce, Category Theory, Combinatorics, Discrete Mathematics, Duality, Dyadic Relations, Foundations of Mathematics, Graph Theory, Logic, Logic of Relatives, Mathematics, Peirce, Relation Theory, Semiotics, Set Theory, Sign Relational Manifolds, Sign Relations, Surveys, Triadic Relations, Triadicity, Type Theory | Tagged , , , , , , , , , , , , , , , , , , , , , , | Leave a comment

Survey of Relation Theory • 4

In this Survey of blog and wiki posts on Relation Theory, relations are viewed from the perspective of combinatorics, in other words, as a topic in discrete mathematics, with special attention to finite structures and concrete set-theoretic constructions, many of … Continue reading

Posted in Algebra, Algebra of Logic, C.S. Peirce, Category Theory, Combinatorics, Discrete Mathematics, Duality, Dyadic Relations, Foundations of Mathematics, Graph Theory, Logic, Logic of Relatives, Mathematics, Peirce, Relation Theory, Semiotics, Set Theory, Sign Relational Manifolds, Sign Relations, Surveys, Triadic Relations, Triadicity, Type Theory | Tagged , , , , , , , , , , , , , , , , , , , , , , | Leave a comment