Differential Expansions of Propositions
Panoptic View • Enlargement Maps
The enlargement or shift operator exhibits a wealth of interesting and useful properties in its own right, so it pays to examine a few of the more salient features playing out on the surface of our initial example,
A suitably generic definition of the extended universe of discourse is afforded by the following set-up.
For a proposition of the form the (first order) enlargement of
is the proposition
defined by the following equation.
The differential variables are boolean variables of the same type as the ordinary variables
Although it is conventional to distinguish the (first order) differential variables with the operational prefix
this way of notating differential variables is entirely optional. It is their existence in particular relations to the initial variables, not their names, which defines them as differential variables.
In the example of logical conjunction, the enlargement
is formulated as follows.
Given that this expression uses nothing more than the boolean ring operations of addition and multiplication, it is permissible to “multiply things out” in the usual manner to arrive at the following result.
To understand what the enlarged or shifted proposition means in logical terms, it serves to go back and analyze the above expression for in the same way we did for
To that end, the value of
at each
may be computed in graphical fashion as shown below.
Collating the data of this analysis yields a boolean expansion or disjunctive normal form (DNF) equivalent to the enlarged proposition
Here is a summary of the result, illustrated by means of a digraph picture, where the “no change” element is drawn as a loop at the point
We may understand the enlarged proposition as telling us all the ways of reaching a model of the proposition
from the points of the universe
cc: Category Theory • Cybernetics • Ontolog • Structural Modeling • Systems Science
cc: FB | Differential Logic • Laws of Form • Peirce (1) (2) (3) (4)
Pingback: Survey of Differential Logic • 3 | Inquiry Into Inquiry
Pingback: Survey of Differential Logic • 4 | Inquiry Into Inquiry
Pingback: Survey of Differential Logic • 5 | Inquiry Into Inquiry