All Process, No Paradox : 6

Re: R.J. LiptonAnti-Social Networks
Re: Lou KauffmanIterants, Imaginaries, Matrices

Comments I made elsewhere about computer science and social networks have a connection with the work in progress on this thread, so it may gain a march to append them here.

Comment 1

I have been interested for a long time now in using graphs to do logic.  For that you need more than positive links — negative relations are more generative than positive relations.  This is analogous to social networks where people can “unlike” or “¬like” other people, or website networks where the information at one node can contradict the information at another node.  In my pursuits it turns out that particular species of graph-theoretic “cacti” are much more useful than the usual trees and unsigned graphs.

Comment 2

For what it’s worth, here is my somewhat dry exposition of “painted cacti” and their application to propositional calculus.

Painted cacti are rooted cacti with any number of symbols from a finite alphabet attached to each node.  In the intended interpretations these symbols (“paints”) are boolean variables.

Triangles are interesting in this context because they arise in logical case expressions.  In one of the customary interpretations of the cactus graphs, a rooted triangular lobe says that the values of the two non-root nodes are logically inequivalent.

This entry was posted in Algorithms, Amphecks, Boolean Algebra, Boolean Functions, C.S. Peirce, Cactus Graphs, Cybernetics, Differential Logic, Graph Theory, Laws of Form, Logic, Logical Graphs, Lou Kauffman, Mathematics, Painted Cacti, Paradox, Peirce, Process, Process Thinking, Propositional Calculus, Spencer Brown, Systems Theory, Time and tagged , , , , , , , , , , , , , , , , , , , , , , . Bookmark the permalink.

1 Response to All Process, No Paradox : 6

  1. Pingback: Survey of Differential Logic • 2 | Inquiry Into Inquiry

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.