Survey of Precursors Of Category Theory • 2

A few years ago I began a sketch on the “Precursors of Category Theory”, tracing the continuities of the category concept from Aristotle, to Kant and Peirce, through Hilbert and Ackermann, to contemporary mathematical practice.  A Survey of resources on the topic is given below, still very rough and incomplete, but perhaps a few will find it of use.

Background

Blog Series

  • Notes On Categories • (1)
  • Precursors Of Category Theory • (1)(2)(3)

Categories à la Peirce

cc: CyberneticsOntolog ForumPeirce ListStructural ModelingSystems Science

This entry was posted in Abstraction, Ackermann, Analogy, Aristotle, C.S. Peirce, Carnap, Category Theory, Diagrams, Foundations of Mathematics, Functional Logic, Hilbert, History of Mathematics, Hypostatic Abstraction, Kant, Logic, Mathematics, Peirce, Propositions As Types Analogy, Relation Theory, Saunders Mac Lane, Semiotics, Type Theory, Universals and tagged , , , , , , , , , , , , , , , , , , , , , , . Bookmark the permalink.

7 Responses to Survey of Precursors Of Category Theory • 2

  1. Pingback: Precursors of Category Theory • Discussion 1 | Inquiry Into Inquiry

  2. Pingback: Precursors of Category Theory • Discussion 2 | Inquiry Into Inquiry

  3. Pingback: Precursors Of Category Theory • Discussion 3 | Inquiry Into Inquiry

  4. Pingback: Icon Index Symbol • 20 | Inquiry Into Inquiry

  5. Pingback: C.S. Peirce & Category Theory • 1 | Inquiry Into Inquiry

  6. Pingback: Category Theory • Comment 1 | Inquiry Into Inquiry

  7. Pingback: Higher Order Sign Relations • 6 | Inquiry Into Inquiry

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.