Inquiry and Analogy • Extending the Existential Interpretation to Quantificational Logic
One of the resources we have for this work is a formal calculus based on C.S. Peirce’s logical graphs. For now we’ll adopt the existential interpretation of that calculus, fixing the meanings of logical constants and connectives at the core level of propositional logic. To build on that core we’ll need to extend the existential interpretation to encompass the analysis of quantified propositions, or quantifications. That in turn will take developing two further capacities of our calculus. On the formal side we’ll need to consider higher order functional types, continuing our earlier venture above. In terms of content we’ll need to consider new species of elemental or singular propositions.
Let us return to the 2-dimensional universe A bridge between propositions and quantifications is afforded by a set of measures or qualifiers
defined by the following equations.
A higher order proposition tells us something about the proposition
namely, which elements in the space of type
are assigned a positive value by
Taken together, the
operators give us a way to express many useful observations about the propositions in
Figure 16 summarizes the action of the
operators on the propositions of type
Resources
- Logic Syllabus
- Boolean Function
- Boolean-Valued Function
- Logical Conjunction
- Minimal Negation Operator
- Introduction to Inquiry Driven Systems
- Functional Logic • Part 1 • Part 2 • Part 3
- Cactus Language • Part 1 • Part 2 • Part 3 • References • Document History
cc: Conceptual Graphs • Cybernetics • Laws of Form • Ontolog Forum
cc: FB | Peirce Matters • Structural Modeling • Systems Science
Pingback: Survey of Abduction, Deduction, Induction, Analogy, Inquiry • 2 | Inquiry Into Inquiry