Functional Logic • Inquiry and Analogy • 15

Inquiry and AnalogyMeasure for Measure

Let us define two families of measures,

\alpha_i, \beta_i : (\mathbb{B} \times \mathbb{B} \to \mathbb{B}) \to \mathbb{B} ~\text{for}~ i = 0 ~\text{to}~ 15,

by means of the following equations:

\begin{matrix}  \alpha_i f & = & \Upsilon (f_i, f) & = & \Upsilon (f_i \Rightarrow f),  \\[6pt]  \beta_i f & = & \Upsilon (f, f_i) & = & \Upsilon (f \Rightarrow f_i).  \end{matrix}

Table 14 shows the value of each \alpha_i on each of the 16 boolean functions f: \mathbb{B} \times \mathbb{B} \to \mathbb{B}.  In terms of the implication ordering on the 16 functions, \alpha_i f = 1 says that f is above or identical to f_i in the implication lattice, that is, f \ge f_i in the implication ordering.

\text{Table 14. Qualifiers of the Implication Ordering}~ \alpha_i f = \Upsilon (f_i, f)
Qualifiers of the Implication Ordering α

Table 15 shows the value of each \beta_i on each of the 16 boolean functions f: \mathbb{B} \times \mathbb{B} \to \mathbb{B}.  In terms of the implication ordering on the 16 functions, \beta_i f = 1 says that f is below or identical to f_i in the implication lattice, that is, f \le f_i in the implication ordering.

\text{Table 15. Qualifiers of the Implication Ordering}~ \beta_i f = \Upsilon (f, f_i)
Qualifiers of the Implication Ordering β

Applied to a given proposition f, the qualifiers \alpha_i and \beta_i tell whether f is above f_i or below f_i, respectively, in the implication ordering.  By way of example, let us trace the effects of several such measures, namely, those which occupy the limiting positions in the Tables.

\begin{array}{*{8}{r}}  \alpha_{0} f = 1  & \mathrm{iff}  & f_{0} \Rightarrow f  & \mathrm{iff}  & 0 \Rightarrow f,  & \mathrm{hence}  & \alpha_{0} f = 1  & \mathrm{for~all} ~ f.  \\[4pt]  \alpha_{15} f = 1  & \mathrm{iff}  & f_{15} \Rightarrow f  & \mathrm{iff}  & 1 \Rightarrow f,  & \mathrm{hence}  & \alpha_{15} f = 1  & \mathrm{iff} ~ f = 1.  \\[4pt]  \beta_{0} f = 1  & \mathrm{iff}  & f \Rightarrow f_{0}  & \mathrm{iff}  & f \Rightarrow 0,  & \mathrm{hence}  & \beta_{0} f = 1  & \mathrm{iff} ~ f = 0.  \\[4pt]  \beta_{15} f = 1  & \mathrm{iff}  & f \Rightarrow f_{15}  & \mathrm{iff}  & f \Rightarrow 1,  & \mathrm{hence}  & \beta_{15} f = 1  & \mathrm{for~all} ~ f.  \end{array}

Expressed in terms of the propositional forms they value positively, \alpha_{0} = \beta_{15} is a totally indiscriminate measure, accepting all propositions f : \mathbb{B} \times \mathbb{B} \to \mathbb{B}, whereas \alpha_{15} and \beta_{0} are measures valuing the constant propositions 1 : \mathbb{B} \times \mathbb{B} \to \mathbb{B} and 0 : \mathbb{B} \times \mathbb{B} \to \mathbb{B}, respectively, above all others.

Finally, in conformity with the use of fiber notation to indicate sets of models, it is natural to use notations like the following to denote sets of propositions satisfying the umpires in question.

\begin{matrix}  [| \alpha_i |] & = & \alpha_i^{-1}(1),  \\[6pt]  [| \beta_i |] & = & \beta_i^{-1}(1),  \\[6pt]  [| \Upsilon_p |] & = & \Upsilon_p^{-1}(1).  \end{matrix}

Resources

cc: Conceptual GraphsCyberneticsLaws of FormOntolog Forum
cc: FB | Peirce MattersStructural ModelingSystems Science

This entry was posted in Abduction, Analogy, Argument, Aristotle, C.S. Peirce, Constraint, Deduction, Determination, Diagrammatic Reasoning, Diagrams, Differential Logic, Functional Logic, Hypothesis, Indication, Induction, Inference, Information, Inquiry, Logic, Logic of Science, Mathematics, Pragmatic Semiotic Information, Probable Reasoning, Propositional Calculus, Propositions, Reasoning, Retroduction, Semiotics, Sign Relations, Syllogism, Triadic Relations, Visualization and tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , . Bookmark the permalink.

1 Response to Functional Logic • Inquiry and Analogy • 15

  1. Pingback: Survey of Abduction, Deduction, Induction, Analogy, Inquiry • 2 | Inquiry Into Inquiry

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.