## The Difference That Makes A Difference That Peirce Makes : 28

I had to go back and remind myself why I took up this thread again, but at least it supplies a lot of material for future study on the difficulties of communicating across paradigms.

At this point it seems worth adding to the record a few exhibits on Peirce’s definition of logic as “formal semiotic” and his variant description of logic as “semiotic, the quasi-necessary, or formal, doctrine of signs”.

Here are two variants of a paragraph where Peirce defines logic as “formal semiotic”.

### Selections from C.S. Peirce, “Carnegie Application” (1902)

#### No. 12.  On the Definition of Logic

Logic will here be defined as formal semiotic.  A definition of a sign will be given which no more refers to human thought than does the definition of a line as the place which a particle occupies, part by part, during a lapse of time.  Namely, a sign is something, A, which brings something, B, its interpretant sign determined or created by it, into the same sort of correspondence with something, C, its object, as that in which itself stands to C.  It is from this definition, together with a definition of “formal”, that I deduce mathematically the principles of logic.  I also make a historical review of all the definitions and conceptions of logic, and show, not merely that my definition is no novelty, but that my non-psychological conception of logic has virtually been quite generally held, though not generally recognized.  (NEM 4, 20–21).

#### No. 12.  On the Definition of Logic [Earlier Draft]

Logic is formal semiotic.  A sign is something, A, which brings something, B, its interpretant sign, determined or created by it, into the same sort of correspondence (or a lower implied sort) with something, C, its object, as that in which itself stands to C.  This definition no more involves any reference to human thought than does the definition of a line as the place within which a particle lies during a lapse of time.  It is from this definition that I deduce the principles of logic by mathematical reasoning, and by mathematical reasoning that, I aver, will support criticism of Weierstrassian severity, and that is perfectly evident.  The word “formal” in the definition is also defined.  (NEM 4, 54).

### Reference

• Charles S. Peirce (1902), “Parts of Carnegie Application” (L 75), published in Carolyn Eisele (ed., 1976), The New Elements of Mathematics by Charles S. Peirce, vol. 4, 13–73.  Online.

In the following passage Peirce explains what he means by calling logic “the quasi-necessary, or formal, doctrine of signs”.

### Selection from C.S. Peirce, “Ground, Object, and Interpretant” (c. 1897)

Logic, in its general sense, is, as I believe I have shown, only another name for semiotic (σημειωτική), the quasi-necessary, or formal, doctrine of signs.  By describing the doctrine as “quasi-necessary”, or formal, I mean that we observe the characters of such signs as we know, and from such an observation, by a process which I will not object to naming Abstraction, we are led to statements, eminently fallible, and therefore in one sense by no means necessary, as to what must be the characters of all signs used by a “scientific” intelligence, that is to say, by an intelligence capable of learning by experience.  As to that process of abstraction, it is itself a sort of observation.

The faculty which I call abstractive observation is one which ordinary people perfectly recognize, but for which the theories of philosophers sometimes hardly leave room.  It is a familiar experience to every human being to wish for something quite beyond his present means, and to follow that wish by the question, “Should I wish for that thing just the same, if I had ample means to gratify it?”  To answer that question, he searches his heart, and in doing so makes what I term an abstractive observation.  He makes in his imagination a sort of skeleton diagram, or outline sketch, of himself, considers what modifications the hypothetical state of things would require to be made in that picture, and then examines it, that is, observes what he has imagined, to see whether the same ardent desire is there to be discerned.  By such a process, which is at bottom very much like mathematical reasoning, we can reach conclusions as to what would be true of signs in all cases, so long as the intelligence using them was scientific.

C.S. Peirce, Collected Papers, CP 2.227
From an unidentified fragment, c. 1897

### Reference

• Peirce, C.S., Collected Papers of Charles Sanders Peirce, vols. 1–6, Charles Hartshorne and Paul Weiss (eds.), vols. 7–8, Arthur W. Burks (ed.), Harvard University Press, Cambridge, MA, 1931–1935, 1958. Volume 2 : Elements of Logic, 1932.

This site uses Akismet to reduce spam. Learn how your comment data is processed.