Peirce’s 1870 “Logic of Relatives” • Comment 9.3

Peirce’s 1870 “Logic of Relatives”Comment 9.3

An idempotent element x in an algebraic system is one which obeys the idempotent law, that is, it satisfies the equation xx = x.  Under most circumstances it is usual to write this as x^2 = x.

If the algebraic system in question falls under the additional laws necessary to carry out the required transformations then x^2 = x is convertible to x - x^2 = 0, and this in turn to x(1 - x) = 0.

If the algebraic system satisfies the requirements of a boolean algebra then the equation x(1 - x) = 0 amounts to saying x \land \lnot x is identically false, in effect, a statement of the classical principle of non‑contradiction.

We have already seen how Boole found rationales for the commutative law and the idempotent law by contemplating the properties of selective operations.

It is time to bring these threads together, which we can do by considering the so-called idempotent representation of sets.  This will give us one of the best ways to understand the significance Boole attaches to selective operations.  It will also link up with the statements Peirce makes regarding his dimension-raising comma operation.

Resources

cc: CyberneticsOntolog ForumStructural ModelingSystems Science
cc: FB | Peirce MattersLaws of Form • Peirce List (1) (2) (3) (4) (5) (6) (7)

This entry was posted in Boole, Boolean Algebra, C.S. Peirce, Logic, Logic of Relatives, Mathematics, Relation Theory, Visualization and tagged , , , , , , , . Bookmark the permalink.

6 Responses to Peirce’s 1870 “Logic of Relatives” • Comment 9.3

  1. Guttering Surrey says:

    I visited several websites however the audio quality for audio songs current at this web page is in fact wonderful.

  2. Pingback: Survey of Relation Theory • 3 | Inquiry Into Inquiry

  3. Pingback: Peirce’s 1870 “Logic Of Relatives” • Overview | Inquiry Into Inquiry

  4. Pingback: Peirce’s 1870 “Logic Of Relatives” • Comment 1 | Inquiry Into Inquiry

  5. Pingback: Survey of Relation Theory • 4 | Inquiry Into Inquiry

  6. Pingback: Survey of Relation Theory • 5 | Inquiry Into Inquiry

Leave a Reply to Guttering Surrey Cancel reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.