Category Archives: Discrete Dynamical Systems

Differential Logic, Dynamic Systems, Tangent Functors • 1

People interested in category theory as applied to systems may wish to check out the following article, reporting work I carried out while engaged in a systems engineering program at Oakland University. The problem addressed is a longstanding one, that … Continue reading

Posted in Amphecks, Boolean Functions, C.S. Peirce, Cactus Graphs, Category Theory, Cybernetics, Differential Analytic Turing Automata, Differential Calculus, Differential Logic, Discrete Dynamical Systems, Dynamical Systems, Graph Theory, Hill Climbing, Hologrammautomaton, Information Theory, Inquiry Driven Systems, Intelligent Systems, Knowledge Representation, Laws of Form, Logic, Logical Graphs, Mathematics, Minimal Negation Operators, Painted Cacti, Peirce, Propositional Calculus, Propositional Equation Reasoning Systems, Spencer Brown, Systems, Visualization | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 6 Comments

Differential Logic • Comment 3

In my previous comment on boundaries in object universes and venn diagrams, and always when I’m being careful about their mathematical senses, the definitions of “topology” and “boundary” I have in mind can be found in any standard textbook.  Here are … Continue reading

Posted in Amphecks, Boolean Functions, C.S. Peirce, Cactus Graphs, Computational Complexity, Diagrammatic Reasoning, Differential Analytic Turing Automata, Differential Logic, Discrete Dynamical Systems, Graph Theory, Hill Climbing, Hologrammautomaton, Laws of Form, Logic, Logical Graphs, Mathematics, Minimal Negation Operators, Painted Cacti, Peirce, Propositional Calculus, Propositional Equation Reasoning Systems, Spencer Brown, Visualization | Tagged , , , , , , , , , , , , , , , , , , , , , , | 3 Comments

Differential Logic • Comment 2

As always, we have to distinguish between the diagram itself, the representation or sign inscribed in some medium, and the formal object it represents under a given interpretation. A venn diagram is an iconic sign we use to represent a … Continue reading

Posted in Amphecks, Boolean Functions, C.S. Peirce, Cactus Graphs, Computational Complexity, Diagrammatic Reasoning, Differential Analytic Turing Automata, Differential Logic, Discrete Dynamical Systems, Graph Theory, Hill Climbing, Hologrammautomaton, Laws of Form, Logic, Logical Graphs, Mathematics, Minimal Negation Operators, Painted Cacti, Peirce, Propositional Calculus, Propositional Equation Reasoning Systems, Spencer Brown, Visualization | Tagged , , , , , , , , , , , , , , , , , , , , , , | 5 Comments

Differential Logic • Comment 1

Re: Gil Kalai • Pivotal Variables Just a tangential association with respect to logical influence and pivotability.  I have been exploring questions related to pivotal variables (“Differences that Make a Difference” or “Difference In ⟹ Difference Out”) via logical analogues … Continue reading

Posted in Amphecks, Boolean Functions, C.S. Peirce, Cactus Graphs, Computational Complexity, Differential Analytic Turing Automata, Differential Logic, Discrete Dynamical Systems, Graph Theory, Hill Climbing, Hologrammautomaton, Logic, Logical Graphs, Logical Influence, Mathematics, Minimal Negation Operators, Painted Cacti, Peirce, Pivotal Variables, Propositional Calculus, Propositional Equation Reasoning Systems, Visualization, Zeroth Order Logic | Tagged , , , , , , , , , , , , , , , , , , , , , , | 3 Comments

Differential Logic

The Logic of Change and Difference Differential logic is the logic of variation — the logic of change and difference. Differential logic is the component of logic whose object is the description of variation, for example, the aspects of change, … Continue reading

Posted in Differential Logic, Discrete Dynamical Systems, Logic, Logical Graphs, Mathematics | Tagged , , , , | 14 Comments