Genus, Species, Pie Charts, Radio Buttons • Discussion 4

Re: Genus, Species, Pie Charts, Radio Buttons • 1
Re: Laws of FormJohn Mingers

JM:
I feel as though you have posted these same diagrams many times, and it is always portrayed as clearing the ground for something else.  But the something else never arrives!  I would be really interested to know what the next step is in your ideas.

Dear John,

Thanks for the question.  Bruce Schuman mentioned radio button logic and I jumped on it “like a duck on a June bug” — as they say in several southern States I know — because that very thing marks an important first step in the application of minimal negation operators to represent finite domains of values, contextual individuals, genus and species, partitions, and so on.  But some of the comments I got next gave me pause and made me feel I should go back and clarify a few points.

I wasn’t sure, but I got the sense Bruce was reading the cactus graphs I posted as an order of hierarchical, ontological, or taxonomic diagrams.  What they really amount to are the abstract, human-viewable renditions of linked data structures or “pointer” data structures in computer memory.  I explained the transformation from planar forms of enclosure to their topological dual trees to the pointer structures in one of the articles on logical graphs I wrote for Wikipedia and later for Google’s now-defunct Knol.  People can find a version of that on the following page of my blog.

Resources

cc: CyberneticsOntolog ForumStructural ModelingSystems Science
cc: FB | Minimal Negation OperatorsLaws of Form • Peirce List (1) (2) (3)

This entry was posted in Amphecks, Animata, Boolean Functions, C.S. Peirce, Cactus Graphs, Differential Logic, Functional Logic, Graph Theory, Laws of Form, Logic, Logical Graphs, Mathematics, Minimal Negation Operators, Painted Cacti, Peirce, Propositional Calculus, Propositional Equation Reasoning Systems, Semiotics, Venn Diagrams, Visualization and tagged , , , , , , , , , , , , , , , , , , , . Bookmark the permalink.

1 Response to Genus, Species, Pie Charts, Radio Buttons • Discussion 4

  1. Pingback: Survey of Animated Logical Graphs • 4 | Inquiry Into Inquiry

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.