## Theme One • A Program Of Inquiry 17

The move is all over but the unpacking, and the time looks ripe to pick up this thread from last spring.  Here, by way of a quick refresher, are a few Tables from earlier discussions.

• Theme One • A Program Of Inquiry 11
• Tables 1 and 2 illustrate the existential and entitative interpretations of cactus graphs and cactus expressions by means of English translations for a few of the most basic forms.

### Existential Interpretation

Table 1 illustrates the existential interpretation of cactus graphs and cactus expressions by providing English translations for a few of the most basic and commonly occurring forms. $\text{Table 1.} ~~ \text{Existential Interpretation}$ $\text{Graph}$ $\text{Expression}$ $\text{Interpretation}$  $~$ $\mathrm{true}$  $\texttt{(} ~ \texttt{)}$ $\mathrm{false}$  $a$ $a$  $\texttt{(} a \texttt{)}$ $\begin{matrix} \tilde{a} \\[2pt] a^\prime \\[2pt] \lnot a \\[2pt] \mathrm{not}~ a \end{matrix}$  $a~b~c$ $\begin{matrix} a \land b \land c \\[6pt] a ~\mathrm{and}~ b ~\mathrm{and}~ c \end{matrix}$  $\texttt{((} a \texttt{)(} b \texttt{)(} c \texttt{))}$ $\begin{matrix} a \lor b \lor c \\[6pt] a ~\mathrm{or}~ b ~\mathrm{or}~ c \end{matrix}$  $\texttt{(} a \texttt{(} b \texttt{))}$ $\begin{matrix} a \Rightarrow b \\[2pt] a ~\mathrm{implies}~ b \\[2pt] \mathrm{if}~ a ~\mathrm{then}~ b \\[2pt] \mathrm{not}~ a ~\mathrm{without}~ b \end{matrix}$  $\texttt{(} a, b \texttt{)}$ $\begin{matrix} a + b \\[2pt] a \neq b \\[2pt] a ~\mathrm{exclusive~or}~ b \\[2pt] a ~\mathrm{not~equal~to}~ b \end{matrix}$  $\texttt{((} a, b \texttt{))}$ $\begin{matrix} a = b \\[2pt] a \iff b \\[2pt] a ~\mathrm{equals}~ b \\[2pt] a ~\mathrm{if~and~only~if}~ b \end{matrix}$  $\texttt{(} a, b, c \texttt{)}$ $\begin{matrix} \mathrm{just~one~of} \\ a, b, c \\ \mathrm{is~false} \end{matrix}$  $\texttt{((} a \texttt{)}, \texttt{(} b \texttt{)}, \texttt{(} c \texttt{))}$ $\begin{matrix} \mathrm{just~one~of} \\ a, b, c \\ \mathrm{is~true} \end{matrix}$  $\texttt{(} a, \texttt{(} b \texttt{)}, \texttt{(} c \texttt{))}$ $\begin{matrix} \mathrm{genus}~ a ~\mathrm{of~species}~ b, c \\[6pt] \mathrm{partition}~ a ~\mathrm{into}~ b, c \\[6pt] \mathrm{pie}~ a ~\mathrm{of~slices}~ b, c \end{matrix}$

### Entitative Interpretation

Table 2 illustrates the entitative interpretation of cactus graphs and cactus expressions by providing English translations for a few of the most basic and commonly occurring forms. $\text{Table 2.} ~~ \text{Entitative Interpretation}$ $\text{Graph}$ $\text{Expression}$ $\text{Interpretation}$  $~$ $\mathrm{false}$  $\texttt{(} ~ \texttt{)}$ $\mathrm{true}$  $a$ $a$  $\texttt{(} a \texttt{)}$ $\begin{matrix} \tilde{a} \\[2pt] a^\prime \\[2pt] \lnot a \\[2pt] \mathrm{not}~ a \end{matrix}$  $a~b~c$ $\begin{matrix} a \lor b \lor c \\[6pt] a ~\mathrm{or}~ b ~\mathrm{or}~ c \end{matrix}$  $\texttt{((} a \texttt{)(} b \texttt{)(} c \texttt{))}$ $\begin{matrix} a \land b \land c \\[6pt] a ~\mathrm{and}~ b ~\mathrm{and}~ c \end{matrix}$  $\texttt{(} a \texttt{)} b$ $\begin{matrix} a \Rightarrow b \\[2pt] a ~\mathrm{implies}~ b \\[2pt] \mathrm{if}~ a ~\mathrm{then}~ b \\[2pt] \mathrm{not}~ a, \mathrm{or}~ b \end{matrix}$  $\texttt{(} a, b \texttt{)}$ $\begin{matrix} a = b \\[2pt] a \iff b \\[2pt] a ~\mathrm{equals}~ b \\[2pt] a ~\mathrm{if~and~only~if}~ b \end{matrix}$  $\texttt{((} a, b \texttt{))}$ $\begin{matrix} a + b \\[2pt] a \neq b \\[2pt] a ~\mathrm{exclusive~or}~ b \\[2pt] a ~\mathrm{not~equal~to}~ b \end{matrix}$  $\texttt{(} a, b, c \texttt{)}$ $\begin{matrix} \mathrm{not~just~one~of} \\ a, b, c \\ \mathrm{is~true} \end{matrix}$  $\texttt{((} a, b, c \texttt{))}$ $\begin{matrix} \mathrm{just~one~of} \\ a, b, c \\ \mathrm{is~true} \end{matrix}$  $\texttt{(((} a \texttt{)}, b, c \texttt{))}$ $\begin{matrix} \mathrm{genus}~ a ~\mathrm{of~species}~ b, c \\[6pt] \mathrm{partition}~ a ~\mathrm{into}~ b, c \\[6pt] \mathrm{pie}~ a ~\mathrm{of~slices}~ b, c \end{matrix}$

### 2 Responses to Theme One • A Program Of Inquiry 17

This site uses Akismet to reduce spam. Learn how your comment data is processed.