{ Information = Comprehension × Extension } • Selection 5

A similar line of thought may be gone through in reference to hypothesis.  In this case we must start with the consideration of the term:

spherical, bright, fragrant, juicy, tropical fruit.

Such a term, formed by the sum of the comprehensions of several terms, is called a conjunctive term.  A conjunctive term has no extension adequate to its comprehension.  Thus the only spherical bright fragrant juicy tropical fruit we know is the orange and that has many other characters besides these.  Hence, such a term is of no use whatever.  If it occurs in the predicate and something is said to be a spherical bright fragrant juicy tropical fruit, since there is nothing which is all this which is not an orange, we may say that this is an orange at once.  On the other hand, if the conjunctive term is subject and we know that every spherical bright fragrant juicy tropical fruit necessarily has certain properties, it must be that we know more than that and can simplify the subject.  Thus a conjunctive term may always be replaced by a simple one.

So if we find that light is capable of producing certain phenomena which could only be enumerated by a long conjunction of terms, we may be sure that this compound predicate may be replaced by a simple one.  And if only one simple one is known in which the conjunctive term is contained, this must be provisionally adopted.

(Peirce 1866, p. 470)


  • Peirce, C.S. (1866), “The Logic of Science, or, Induction and Hypothesis”, Lowell Lectures of 1866, pp. 357–504 in Writings of Charles S. Peirce : A Chronological Edition, Volume 1, 1857–1866, Peirce Edition Project, Indiana University Press, Bloomington, IN, 1982.


This entry was posted in Abduction, Comprehension, Deduction, Extension, Hypothesis, Icon Index Symbol, Induction, Inference, Information, Information = Comprehension × Extension, Information Theory, Inquiry, Intension, Logic, Logic of Science, Peirce, Peirce's Categories, Pragmatism, Science, Scientific Method, Semiotic Information, Semiotics, Sign Relations and tagged , , , , , , , , , , , , , , , , , , , , , , . Bookmark the permalink.

One Response to { Information = Comprehension × Extension } • Selection 5

  1. Pingback: { Information = Comprehension × Extension } • Comment 1 | Inquiry Into Inquiry

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s