Tag Archives: Inquiry Driven Systems

Higher Order Sign Relations • Discussion 1

Re: FB | Charles S. Peirce Society • John Corcoran Questions about the proper treatment of use and mention from the standpoint of Peirce’s theory of signs came up recently in discussions on Facebook.  In pragmatic semiotics the trade‑off between … Continue reading

Posted in Arithmetization, C.S. Peirce, Gödel Numbers, Higher Order Sign Relations, Inquiry, Inquiry Driven Systems, Inquiry Into Inquiry, Logic, Mathematics, Quotation, Reflection, Reflective Interpretive Frameworks, Semiotics, Sign Relations, Triadic Relations, Use and Mention, Visualization | Tagged , , , , , , , , , , , , , , , , | 6 Comments

Basal Ingredients Of Society • ℞

THE SOCIAL COMPACT If then we discard from the social compact what is not of its essence, we shall find that it reduces itself to the following terms: “Each of us puts his person and all his power in common … Continue reading

Posted in Adaptive Systems, Cybernetics, Democracy, Education, Governance, Inquiry, Inquiry Driven Systems, Learning Organizations, Politics, Reciprocity, Rousseau, Social Compact, Sustainability | Tagged , , , , , , , , , , , , | 3 Comments

Basal Ingredients Of Society • Prologue

I settled on the acronym BIOS to suggest the vital elements of life in society, a life in association with others, and not just any association but one whose flickers of life are sustained for more than a few vicissitudes of … Continue reading

Posted in Adaptive Systems, Cybernetics, Democracy, Education, Governance, Inquiry, Inquiry Driven Systems, Learning Organizations, Politics, Reciprocity, Rousseau, Social Compact, Sustainability | Tagged , , , , , , , , , , , , | 3 Comments

Differential Propositional Calculus • 37

Foreshadowing Transformations • Extensions and Projections of Discourse And, despite the care which she took to look behind her at every moment, she failed to see a shadow which followed her like her own shadow, which stopped when she stopped, … Continue reading

Posted in Amphecks, Animata, Boolean Algebra, Boolean Functions, C.S. Peirce, Cactus Graphs, Category Theory, Change, Cybernetics, Differential Analytic Turing Automata, Differential Calculus, Differential Logic, Discrete Dynamics, Equational Inference, Functional Logic, Graph Theory, Hologrammautomaton, Indicator Functions, Inquiry Driven Systems, Leibniz, Logic, Logical Graphs, Mathematics, Minimal Negation Operators, Propositional Calculus, Time, Topology, Visualization | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , | 3 Comments

Differential Propositional Calculus • 36

Transformations of Discourse It is understandable that an engineer should be completely absorbed in his speciality, instead of pouring himself out into the freedom and vastness of the world of thought, even though his machines are being sent off to … Continue reading

Posted in Amphecks, Animata, Boolean Algebra, Boolean Functions, C.S. Peirce, Cactus Graphs, Category Theory, Change, Cybernetics, Differential Analytic Turing Automata, Differential Calculus, Differential Logic, Discrete Dynamics, Equational Inference, Functional Logic, Graph Theory, Hologrammautomaton, Indicator Functions, Inquiry Driven Systems, Leibniz, Logic, Logical Graphs, Mathematics, Minimal Negation Operators, Propositional Calculus, Time, Topology, Visualization | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , | 3 Comments

Differential Propositional Calculus • 35

Example 2. Drives and Their Vicissitudes (concl.) Applied to the example of ‑gear curves, the indexing scheme results in the data of the next two Tables, showing one period for each orbit. The states in each orbit are listed as … Continue reading

Posted in Amphecks, Animata, Boolean Algebra, Boolean Functions, C.S. Peirce, Cactus Graphs, Category Theory, Change, Cybernetics, Differential Analytic Turing Automata, Differential Calculus, Differential Logic, Discrete Dynamics, Equational Inference, Functional Logic, Graph Theory, Hologrammautomaton, Indicator Functions, Inquiry Driven Systems, Leibniz, Logic, Logical Graphs, Mathematics, Minimal Negation Operators, Propositional Calculus, Time, Topology, Visualization | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , | 4 Comments

Differential Propositional Calculus • 34

Example 2. Drives and Their Vicissitudes (cont.) With a little thought it is possible to devise a canonical indexing scheme for the states in differential logical systems.  A scheme of that order allows for comparing changes of state in universes … Continue reading

Posted in Amphecks, Animata, Boolean Algebra, Boolean Functions, C.S. Peirce, Cactus Graphs, Category Theory, Change, Cybernetics, Differential Analytic Turing Automata, Differential Calculus, Differential Logic, Discrete Dynamics, Equational Inference, Functional Logic, Graph Theory, Hologrammautomaton, Indicator Functions, Inquiry Driven Systems, Leibniz, Logic, Logical Graphs, Mathematics, Minimal Negation Operators, Propositional Calculus, Time, Topology, Visualization | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , | 3 Comments

Differential Propositional Calculus • 33

Example 2. Drives and Their Vicissitudes (cont.) Expressed in the language of drives and gears our next Example may be described as the family of fourth‑gear curves through the fourth extension   Those are the trajectories generated subject to the … Continue reading

Posted in Amphecks, Animata, Boolean Algebra, Boolean Functions, C.S. Peirce, Cactus Graphs, Category Theory, Change, Cybernetics, Differential Analytic Turing Automata, Differential Calculus, Differential Logic, Discrete Dynamics, Equational Inference, Functional Logic, Graph Theory, Hologrammautomaton, Indicator Functions, Inquiry Driven Systems, Leibniz, Logic, Logical Graphs, Mathematics, Minimal Negation Operators, Propositional Calculus, Time, Topology, Visualization | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , | 4 Comments

Differential Propositional Calculus • 32

I open my scuttle at night and see the far‑sprinkled systems, And all I see, multiplied as high as I can cipher, edge but      the rim of the farther systems. — Walt Whitman • Leaves of Grass Example 2. Drives … Continue reading

Posted in Amphecks, Animata, Boolean Algebra, Boolean Functions, C.S. Peirce, Cactus Graphs, Category Theory, Change, Cybernetics, Differential Analytic Turing Automata, Differential Calculus, Differential Logic, Discrete Dynamics, Equational Inference, Functional Logic, Graph Theory, Hologrammautomaton, Indicator Functions, Inquiry Driven Systems, Leibniz, Logic, Logical Graphs, Mathematics, Minimal Negation Operators, Propositional Calculus, Time, Topology, Visualization | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , | 3 Comments

Differential Propositional Calculus • 31

Tacit Extensions Returning to the Table of Differential Propositions, let’s examine how the general concept of a tacit extension applies to the differential extension of a one‑dimensional universe of discourse, where and Each proposition has a canonical expression in the … Continue reading

Posted in Amphecks, Animata, Boolean Algebra, Boolean Functions, C.S. Peirce, Cactus Graphs, Category Theory, Change, Cybernetics, Differential Analytic Turing Automata, Differential Calculus, Differential Logic, Discrete Dynamics, Equational Inference, Functional Logic, Graph Theory, Hologrammautomaton, Indicator Functions, Inquiry Driven Systems, Leibniz, Logic, Logical Graphs, Mathematics, Minimal Negation Operators, Propositional Calculus, Time, Topology, Visualization | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , | 3 Comments