Tag Archives: Diagrammatic Reasoning

Logical Graphs • Formal Development 1

Logical graphs are next presented as a formal system by going back to the initial elements and developing their consequences in a systematic manner. Continue reading

Posted in Animata, Boolean Algebra, Boolean Functions, C.S. Peirce, Cactus Graphs, Deduction, Diagrammatic Reasoning, Equational Inference, Graph Theory, Laws of Form, Logic, Logical Graphs, Mathematics, Painted Cacti, Peirce, Propositional Calculus, Propositional Equation Reasoning Systems, Semiotics, Spencer Brown, Visualization | Tagged , , , , , , , , , , , , , , , , , , , | 3 Comments

Logical Graphs • Discussion 6

Re: Logical Graphs • First Impressions Re: Academia.edu • Robert Appleton RA: As a professional graphic designer and non-mathematician reading your two diagrams, I need to ask for a simpler statement of their purpose.  What do Fig 1 and Fig 2 represent … Continue reading

Posted in Amphecks, Animata, Boolean Algebra, Boolean Functions, C.S. Peirce, Cactus Graphs, Constraint Satisfaction Problems, Deduction, Diagrammatic Reasoning, Duality, Equational Inference, Graph Theory, Laws of Form, Logic, Logical Graphs, Mathematics, Minimal Negation Operators, Painted Cacti, Propositional Calculus, Propositional Equation Reasoning Systems, Relation Theory, Semiotics, Sign Relations, Spencer Brown, Topology, Visualization | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , | 5 Comments

Logical Graphs • Discussion 5

Re: Logical Graphs • First Impressions Re: Facebook • Daniel Everett DE: Nice discussion.  Development of icon-based reasoning As it happens, even though Peirce’s systems of logical graphs do have iconic features, their real power over other sorts of logical … Continue reading

Posted in Amphecks, Animata, Boolean Algebra, Boolean Functions, C.S. Peirce, Cactus Graphs, Constraint Satisfaction Problems, Deduction, Diagrammatic Reasoning, Duality, Equational Inference, Graph Theory, Laws of Form, Logic, Logical Graphs, Mathematics, Minimal Negation Operators, Painted Cacti, Propositional Calculus, Propositional Equation Reasoning Systems, Relation Theory, Semiotics, Sign Relations, Spencer Brown, Topology, Visualization | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , | 5 Comments

Logical Graphs • First Impressions

A logical graph is a graph-theoretic structure in one of the styles of graphical syntax that Charles Sanders Peirce developed for logic. Continue reading

Posted in Animata, Boolean Algebra, Boolean Functions, C.S. Peirce, Cactus Graphs, Deduction, Diagrammatic Reasoning, Equational Inference, Graph Theory, Laws of Form, Logic, Logical Graphs, Mathematics, Painted Cacti, Peirce, Propositional Calculus, Propositional Equation Reasoning Systems, Semiotics, Spencer Brown, Visualization | Tagged , , , , , , , , , , , , , , , , , , , | 30 Comments

Functional Logic • Inquiry and Analogy • 21

Inquiry and Analogy • Generalized Umpire Operators To get a better handle on the space of higher order propositions and continue developing our functional approach to quantification theory, we’ll need a number of specialized tools.  To begin, we define a … Continue reading

Posted in Abduction, Analogy, Argument, Aristotle, C.S. Peirce, Constraint, Deduction, Determination, Diagrammatic Reasoning, Diagrams, Differential Logic, Functional Logic, Hypothesis, Indication, Induction, Inference, Information, Inquiry, Logic, Logic of Science, Mathematics, Pragmatic Semiotic Information, Probable Reasoning, Propositional Calculus, Propositions, Reasoning, Retroduction, Semiotics, Sign Relations, Syllogism, Triadic Relations, Visualization | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 4 Comments

Functional Logic • Inquiry and Analogy • 20

Inquiry and Analogy • Application of Higher Order Propositions to Quantification Theory Table 21 provides a thumbnail sketch of the relationships discussed in this section. Resources Logic Syllabus Boolean Function Boolean-Valued Function Logical Conjunction Minimal Negation Operator Introduction to Inquiry … Continue reading

Posted in Abduction, Analogy, Argument, Aristotle, C.S. Peirce, Constraint, Deduction, Determination, Diagrammatic Reasoning, Diagrams, Differential Logic, Functional Logic, Hypothesis, Indication, Induction, Inference, Information, Inquiry, Logic, Logic of Science, Mathematics, Pragmatic Semiotic Information, Probable Reasoning, Propositional Calculus, Propositions, Reasoning, Retroduction, Semiotics, Sign Relations, Syllogism, Triadic Relations, Visualization | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 4 Comments

Functional Logic • Inquiry and Analogy • 19

Inquiry and Analogy • Application of Higher Order Propositions to Quantification Theory Reflection is turning a topic over in various aspects and in various lights so that nothing significant about it shall be overlooked — almost as one might turn … Continue reading

Posted in Abduction, Analogy, Argument, Aristotle, C.S. Peirce, Constraint, Deduction, Determination, Diagrammatic Reasoning, Diagrams, Differential Logic, Functional Logic, Hypothesis, Indication, Induction, Inference, Information, Inquiry, Logic, Logic of Science, Mathematics, Pragmatic Semiotic Information, Probable Reasoning, Propositional Calculus, Propositions, Reasoning, Retroduction, Semiotics, Sign Relations, Syllogism, Triadic Relations, Visualization | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 4 Comments

Functional Logic • Inquiry and Analogy • 18

Inquiry and Analogy • Application of Higher Order Propositions to Quantification Theory Last time we took up a fourfold scheme of quantified propositional forms traditionally known as a “Square of Opposition”, relating it to a quartet of higher order propositions … Continue reading

Posted in Abduction, Analogy, Argument, Aristotle, C.S. Peirce, Constraint, Deduction, Determination, Diagrammatic Reasoning, Diagrams, Differential Logic, Functional Logic, Hypothesis, Indication, Induction, Inference, Information, Inquiry, Logic, Logic of Science, Mathematics, Pragmatic Semiotic Information, Probable Reasoning, Propositional Calculus, Propositions, Reasoning, Retroduction, Semiotics, Sign Relations, Syllogism, Triadic Relations, Visualization | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 4 Comments

Functional Logic • Inquiry and Analogy • 17

Inquiry and Analogy • Application of Higher Order Propositions to Quantification Theory Our excursion into the expanding landscape of higher order propositions has come round to the point where we can begin to open up new perspectives on quantificational logic. … Continue reading

Posted in Abduction, Analogy, Argument, Aristotle, C.S. Peirce, Constraint, Deduction, Determination, Diagrammatic Reasoning, Diagrams, Differential Logic, Functional Logic, Hypothesis, Indication, Induction, Inference, Information, Inquiry, Logic, Logic of Science, Mathematics, Pragmatic Semiotic Information, Probable Reasoning, Propositional Calculus, Propositions, Reasoning, Retroduction, Semiotics, Sign Relations, Syllogism, Triadic Relations, Visualization | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 4 Comments

Functional Logic • Inquiry and Analogy • 16

Inquiry and Analogy • Extending the Existential Interpretation to Quantificational Logic One of the resources we have for our investigation is a formal calculus based on C.S. Peirce’s logical graphs.  For the present we’ll adopt the existential interpretation of that calculus, … Continue reading

Posted in Abduction, Analogy, Argument, Aristotle, C.S. Peirce, Constraint, Deduction, Determination, Diagrammatic Reasoning, Diagrams, Differential Logic, Functional Logic, Hypothesis, Indication, Induction, Inference, Information, Inquiry, Logic, Logic of Science, Mathematics, Pragmatic Semiotic Information, Probable Reasoning, Propositional Calculus, Propositions, Reasoning, Retroduction, Semiotics, Sign Relations, Syllogism, Triadic Relations, Visualization | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 4 Comments