Relations & Their Relatives : 11

Re: Peirce List DiscussionJeffrey Brian Downard

In discussing the “combinatorial explosion” of dyadic relations that takes off in passing from a universe of two elements to a universe of three elements, I made the following observation:

Looking back from the ascent we see that the two-point universe \{ \mathrm{I}, \mathrm{J} \} manifests a type of formal degeneracy (loss of generality) compared with the three-point universe \{ \mathrm{I}, \mathrm{J}, \mathrm{K} \}.  This is due to the circumstance that the number of “diagonal” pairs, those of the form \mathrm{A\!:\!A}, equals the number of “off-diagonal” pairs, those of the form \mathrm{A\!:\!B}, so the two-point case exhibits symmetries that will be broken as soon as one adds another element to the universe.

There are two types of symmetry that we might be talking about in this setting and it behooves us to keep them distinctly in mind:

  1. There is the symmetry exhibited by pairs of the form \mathrm{A\!:\!A} versus the asymmetry exhibited by pairs of the form \mathrm{A\!:\!B}.
  2. There is the number of pairs of the form \mathrm{A\!:\!A} versus the number of pairs of the form \mathrm{A\!:\!B} and whether those numbers are equal or not.

The type of symmetry (“sameness in measure”) motivating the above observation is the second type, where the number of pairs on the diagonal is equal to the number of pairs off the diagonal.  That is the symmetry that will be broken when we pass from the 2-point universe to the 3-point universe.

This entry was posted in Combinatorics, Graph Theory, Group Theory, Logic, Logic of Relatives, Mathematics, Peirce, Peirce List, Relation Theory, Semiotics, Sign Relations, Tertium Quid, Thirdness, Triadic Relations, Triadicity and tagged , , , , , , , , , , , , , , . Bookmark the permalink.

3 Responses to Relations & Their Relatives : 11

  1. Pingback: Survey of Relation Theory • 1 | Inquiry Into Inquiry

  2. Pingback: Survey of Relation Theory • 2 | Inquiry Into Inquiry

  3. Pingback: Survey of Relation Theory • 3 | Inquiry Into Inquiry

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s