Tag Archives: Artificial Intelligence

Survey of Theme One Program • 7

This is a Survey of resources relating to the Theme One Program I worked on all through the 1980s.  The aim was to develop fundamental algorithms and data structures for integrating empirical learning with logical reasoning.  I had earlier developed … Continue reading

Posted in Algorithms, Animata, Artificial Intelligence, Automated Research Tools, Boolean Functions, C.S. Peirce, Cactus Graphs, Constraint Satisfaction Problems, Data Structures, Differential Logic, Equational Inference, Formal Languages, Graph Theory, Inquiry Driven Systems, Laws of Form, Learning Theory, Logic, Logical Graphs, Mathematics, Minimal Negation Operators, Painted Cacti, Propositional Calculus, Propositional Equation Reasoning Systems, Spencer Brown, Visualization | Tagged , , , , , , , , , , , , , , , , , , , , , , , , | 80 Comments

Survey of Inquiry Driven Systems • 7

This is a Survey of work in progress on Inquiry Driven Systems, material I plan to refine toward a more compact and systematic treatment of the subject. An inquiry driven system is a system having among its state variables some … Continue reading

Posted in Abduction, Adaptive Systems, Analogy, Animata, Artificial Intelligence, Automated Research Tools, C.S. Peirce, Cognitive Science, Cybernetics, Deduction, Educational Systems Design, Educational Technology, Fixation of Belief, Induction, Information Theory, Inquiry, Inquiry Driven Systems, Inquiry Into Inquiry, Intelligent Systems, Interpretation, Logic, Logic of Science, Mathematics, Mental Models, Pragmatic Maxim, Semiotics, Sign Relations, Triadic Relations, Visualization | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 8 Comments

Constraints and Indications • 2

Re: Constraints and Indications • 1 Re: Ontolog Forum • Joseph Simpson Coping with collaboration, communication, context, integration, interoperability, perspective, purpose, and the reality of the information dimension demands a transition from conceptual environments bounded by dyadic relations to those … Continue reading

Posted in Adaptive Systems, Artificial Intelligence, Ashby, C.S. Peirce, Constraint, Control, Cybernetics, Determination, Error-Controlled Regulation, Feedback, Indication, Indicator Functions, Information, Inquiry, Inquiry Driven Systems, Intelligent Systems, Intentionality, Learning Theory, Semiotic Information, Semiotics, Systems Theory, Uncertainty | Tagged , , , , , , , , , , , , , , , , , , , , , | Leave a comment

Constraints and Indications • 1

Re: Peirce List • Kaina Stoicheia and the Symbol Grounding Problem Re: Jerry Chandler • Christophe Menant • Jon Awbrey • Christophe Menant The system‑theoretic concept of constraint is one that unifies a manifold of other notions — definition, determination, … Continue reading

Posted in Adaptive Systems, Artificial Intelligence, Ashby, C.S. Peirce, Constraint, Control, Cybernetics, Determination, Error-Controlled Regulation, Feedback, Indication, Indicator Functions, Information, Inquiry, Inquiry Driven Systems, Intelligent Systems, Intentionality, Learning Theory, Semiotic Information, Semiotics, Systems Theory, Uncertainty | Tagged , , , , , , , , , , , , , , , , , , , , , | 1 Comment

Theme One Program • Jets and Sharks 3

Re: Theme One Program • Jets and Sharks • (1) • (2) Example 5. Jets and Sharks (cont.) Given a representation of the Jets and Sharks universe in computer memory, we naturally want to see if the memory serves to … Continue reading

Posted in Algorithms, Animata, Artificial Intelligence, Boolean Functions, C.S. Peirce, Cactus Graphs, Cognition, Computation, Constraint Satisfaction Problems, Data Structures, Differential Logic, Equational Inference, Formal Languages, Graph Theory, Inquiry Driven Systems, Laws of Form, Learning Theory, Logic, Logical Graphs, Mathematics, Minimal Negation Operators, Painted Cacti, Peirce, Propositional Calculus, Semiotics, Spencer Brown, Visualization | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , | 3 Comments

Theme One Program • Jets and Sharks 2

Example 5. Jets and Sharks (cont.) As we saw last time, Theme One reads the text file shown below and constructs a cactus graph data structure in computer memory.  The cactus graph represents a single logical formula in propositional calculus and … Continue reading

Posted in Algorithms, Animata, Artificial Intelligence, Boolean Functions, C.S. Peirce, Cactus Graphs, Cognition, Computation, Constraint Satisfaction Problems, Data Structures, Differential Logic, Equational Inference, Formal Languages, Graph Theory, Inquiry Driven Systems, Laws of Form, Learning Theory, Logic, Logical Graphs, Mathematics, Minimal Negation Operators, Painted Cacti, Peirce, Propositional Calculus, Semiotics, Spencer Brown, Visualization | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , | 4 Comments

Theme One Program • Jets and Sharks 1

It is easy to spend a long time on the rudiments of learning and logic before getting down to practical applications — but I think we’ve circled square one long enough to expand our scope and see what the category … Continue reading

Posted in Algorithms, Animata, Artificial Intelligence, Boolean Functions, C.S. Peirce, Cactus Graphs, Cognition, Computation, Constraint Satisfaction Problems, Data Structures, Differential Logic, Equational Inference, Formal Languages, Graph Theory, Inquiry Driven Systems, Laws of Form, Learning Theory, Logic, Logical Graphs, Mathematics, Minimal Negation Operators, Painted Cacti, Peirce, Propositional Calculus, Semiotics, Spencer Brown, Visualization | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , | 5 Comments

Theme One Program • Exposition 9

Transformation Rules and Equivalence Classes The abstract character of the cactus language relative to its logical interpretations makes it possible to give abstract rules of equivalence for transforming cacti among themselves and partitioning the space of cacti into formal equivalence … Continue reading

Posted in Algorithms, Animata, Artificial Intelligence, Boolean Functions, C.S. Peirce, Cactus Graphs, Cognition, Computation, Constraint Satisfaction Problems, Data Structures, Differential Logic, Equational Inference, Formal Languages, Graph Theory, Inquiry Driven Systems, Laws of Form, Learning Theory, Logic, Logical Graphs, Mathematics, Minimal Negation Operators, Painted Cacti, Peirce, Propositional Calculus, Semiotics, Spencer Brown, Visualization | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , | 3 Comments

Theme One Program • Exposition 8

Mathematical Structure and Logical Interpretation The main things to take away from the previous post are the following two ideas, one syntactic and one semantic. Syntax.  The compositional structures of cactus graphs and cactus expressions are constructed from two kinds of connective … Continue reading

Posted in Algorithms, Animata, Artificial Intelligence, Boolean Functions, C.S. Peirce, Cactus Graphs, Cognition, Computation, Constraint Satisfaction Problems, Data Structures, Differential Logic, Equational Inference, Formal Languages, Graph Theory, Inquiry Driven Systems, Laws of Form, Learning Theory, Logic, Logical Graphs, Mathematics, Minimal Negation Operators, Painted Cacti, Peirce, Propositional Calculus, Semiotics, Spencer Brown, Visualization | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , | 3 Comments

Theme One Program • Exposition 7

Logical Cacti Up till now we’ve been working to hammer out a two‑edged sword of syntax, honing the syntax of cactus graphs and cactus expressions and turning it to use in taming the syntax of two‑level formal languages. But the … Continue reading

Posted in Algorithms, Animata, Artificial Intelligence, Boolean Functions, C.S. Peirce, Cactus Graphs, Cognition, Computation, Constraint Satisfaction Problems, Data Structures, Differential Logic, Equational Inference, Formal Languages, Graph Theory, Inquiry Driven Systems, Laws of Form, Learning Theory, Logic, Logical Graphs, Mathematics, Minimal Negation Operators, Painted Cacti, Peirce, Propositional Calculus, Semiotics, Spencer Brown, Visualization | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , | 4 Comments