Category Archives: Peirce’s Categories

Information = Comprehension × Extension • Selection 3

Selection 3 opens with Peirce remarking a critical property of genuine symbols — the class of symbols is not closed under combinations.  In particular, there are logical conjunctions of symbols and logical disjunctions of symbols which are not themselves genuine … Continue reading

Posted in Abduction, C.S. Peirce, Comprehension, Deduction, Extension, Hypothesis, Icon Index Symbol, Induction, Inference, Information = Comprehension × Extension, Inquiry, Intension, Logic, Peirce's Categories, Pragmatic Semiotic Information, Pragmatism, Scientific Method, Semiotics, Sign Relations | Tagged , , , , , , , , , , , , , , , , , , | 6 Comments

Information = Comprehension × Extension • Selection 2

Over the course of Selection 1 Peirce introduces the ideas he needs to answer stubborn questions about the validity of scientific inference.  Briefly put, the validity of scientific inference depends on the ability of symbols to express superfluous comprehension, the … Continue reading

Posted in Abduction, C.S. Peirce, Comprehension, Deduction, Extension, Hypothesis, Icon Index Symbol, Induction, Inference, Information = Comprehension × Extension, Inquiry, Intension, Logic, Peirce's Categories, Pragmatic Semiotic Information, Pragmatism, Scientific Method, Semiotics, Sign Relations | Tagged , , , , , , , , , , , , , , , , , , | 5 Comments

Information = Comprehension × Extension • Selection 1

Our first text comes from Peirce’s Lowell Lectures of 1866, titled “The Logic of Science, or, Induction and Hypothesis”.  I still remember the first time I read these words and the light that lit up the page and my mind. … Continue reading

Posted in Abduction, C.S. Peirce, Comprehension, Deduction, Extension, Hypothesis, Icon Index Symbol, Induction, Inference, Information = Comprehension × Extension, Inquiry, Intension, Logic, Peirce's Categories, Pragmatic Semiotic Information, Pragmatism, Scientific Method, Semiotics, Sign Relations | Tagged , , , , , , , , , , , , , , , , , , | 8 Comments

Information = Comprehension × Extension • Preamble

Eight summers ago I hit on what struck me as a new insight into one of the most recalcitrant problems in Peirce’s semiotics and logic of science, namely, the relation between “the manner in which different representations stand for their … Continue reading

Posted in Abduction, C.S. Peirce, Comprehension, Deduction, Extension, Hypothesis, Icon Index Symbol, Induction, Inference, Information = Comprehension × Extension, Inquiry, Intension, Logic, Peirce's Categories, Pragmatic Semiotic Information, Pragmatism, Scientific Method, Semiotics, Sign Relations | Tagged , , , , , , , , , , , , , , , , , , | 3 Comments

Precursors Of Category Theory • 6

Hilbert and Ackermann • Principles of Mathematical Logic (1928) For the intuitive interpretation on which we have hitherto based the predicate calculus, it was essential that the sentences and predicates should be sharply differentiated from the individuals, which occur as … Continue reading

Posted in Abstraction, Ackermann, Aristotle, C.S. Peirce, Carnap, Category Theory, Hilbert, Kant, Logic, Logic of Relatives, Mathematics, Peirce, Peirce's Categories, Relation Theory, Saunders Mac Lane, Sign Relations, Type Theory | Tagged , , , , , , , , , , , , , , , , | 3 Comments

Precursors Of Category Theory • 5

A demonstration rests in a finite number of steps. G. Spencer Brown • Laws of Form David Hilbert • “On the Infinite” (1925) Finally, let us recall our real subject and, so far as the infinite is concerned, draw the … Continue reading

Posted in Abstraction, Ackermann, Aristotle, C.S. Peirce, Carnap, Category Theory, Hilbert, Kant, Logic, Logic of Relatives, Mathematics, Peirce, Peirce's Categories, Relation Theory, Saunders Mac Lane, Sign Relations, Type Theory | Tagged , , , , , , , , , , , , , , , , | 3 Comments

Precursors Of Category Theory • 4

C.S. Peirce • “Prolegomena to an Apology for Pragmaticism” (1906) I will now say a few words about what you have called Categories, but for which I prefer the designation Predicaments, and which you have explained as predicates of predicates. … Continue reading

Posted in Abstraction, Ackermann, Aristotle, C.S. Peirce, Carnap, Category Theory, Hilbert, Kant, Logic, Logic of Relatives, Mathematics, Peirce, Peirce's Categories, Relation Theory, Saunders Mac Lane, Sign Relations, Type Theory | Tagged , , , , , , , , , , , , , , , , | 3 Comments

Precursors Of Category Theory • 3

Act only according to that maxim by which you can at the same time will that it should become a universal law. Immanuel Kant (1785) C.S. Peirce • “On a New List of Categories” (1867) §1.  This paper is based … Continue reading

Posted in Abstraction, Ackermann, Aristotle, C.S. Peirce, Carnap, Category Theory, Hilbert, Kant, Logic, Logic of Relatives, Mathematics, Peirce, Peirce's Categories, Relation Theory, Saunders Mac Lane, Sign Relations, Type Theory | Tagged , , , , , , , , , , , , , , , , | 3 Comments

Precursors Of Category Theory • 2

Thanks to art, instead of seeing one world only, our own, we see that world multiply itself and we have at our disposal as many worlds as there are original artists … ☙ Marcel Proust When it comes to looking … Continue reading

Posted in Abstraction, Ackermann, Aristotle, C.S. Peirce, Carnap, Category Theory, Hilbert, Kant, Logic, Logic of Relatives, Mathematics, Peirce, Peirce's Categories, Relation Theory, Saunders Mac Lane, Sign Relations, Type Theory | Tagged , , , , , , , , , , , , , , , , | 4 Comments

Precursors Of Category Theory • 1

A few years ago I began a sketch on the “Precursors of Category Theory”, tracing the continuities of the category concept from Aristotle, to Kant and Peirce, through Hilbert and Ackermann, to contemporary mathematical practice.  My notes on the project … Continue reading

Posted in Abstraction, Ackermann, Aristotle, C.S. Peirce, Carnap, Category Theory, Hilbert, Kant, Logic, Logic of Relatives, Mathematics, Peirce, Peirce's Categories, Relation Theory, Saunders Mac Lane, Sign Relations, Type Theory | Tagged , , , , , , , , , , , , , , , , | 3 Comments