Animated Logical Graphs • 28

Re: Ontolog ForumJSJA

I will have to focus on other business for a couple of weeks — so just by way of reminding myself what we were talking about at this juncture where logical graphs and differential logic intersect, here’s my comment on R.J. Lipton and K.W. Regan’s blog post about Discrepancy Games and Sensitivity.

Just by way of a general observation, concepts like discrepancy, influence, sensitivity, etc. are differential in character, so I tend to think the proper grounds for approaching them more systematically will come from developing the logical analogue of differential geometry.

I took a few steps in this direction some years ago in connection with an effort to understand a certain class of intelligent systems as dynamical systems.  There’s a motley assortment of links here:


cc: Systems ScienceStructural ModelingOntolog ForumLaws of FormCybernetics

This entry was posted in Amphecks, Animata, Boolean Algebra, Boolean Functions, C.S. Peirce, Cactus Graphs, Constraint Satisfaction Problems, Deduction, Diagrammatic Reasoning, Duality, Equational Inference, Graph Theory, Laws of Form, Logic, Logical Graphs, Mathematics, Minimal Negation Operators, Model Theory, Painted Cacti, Peirce, Proof Theory, Propositional Calculus, Propositional Equation Reasoning Systems, Spencer Brown, Theorem Proving, Visualization and tagged , , , , , , , , , , , , , , , , , , , , , , , , , . Bookmark the permalink.

3 Responses to Animated Logical Graphs • 28

  1. Pingback: Survey of Animated Logical Graphs • 2 | Inquiry Into Inquiry

  2. Pingback: Survey of Animated Logical Graphs • 2 | Inquiry Into Inquiry

  3. Pingback: Survey of Animated Logical Graphs • 3 | Inquiry Into Inquiry

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.