Tag Archives: Group Theory

Differential Propositional Calculus • 3

Formal Development The preceding discussion outlined the ideas leading to the differential extension of propositional logic.  The next task is to lay out the concepts and terminology needed to describe various orders of differential propositional calculi. Elementary Notions Logical description … Continue reading

Posted in Amphecks, Boolean Functions, C.S. Peirce, Cactus Graphs, Category Theory, Change, Computational Complexity, Cybernetics, Differential Analytic Turing Automata, Differential Calculus, Differential Logic, Discrete Dynamics, Dynamical Systems, Equational Inference, Functional Logic, Gradient Descent, Graph Theory, Group Theory, Hologrammautomaton, Indicator Functions, Logic, Logical Graphs, Mathematical Models, Mathematics, Minimal Negation Operators, Painted Cacti, Peirce, Propositional Calculus, Propositional Equation Reasoning Systems, Time, Visualization | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment

Differential Propositional Calculus • 2

Cactus Calculus Table 6 outlines a syntax for propositional calculus based on two types of logical connectives, both of variable -ary scope. A bracketed list of propositional expressions in the form indicates exactly one of the propositions is false. A … Continue reading

Posted in Amphecks, Boolean Functions, C.S. Peirce, Cactus Graphs, Category Theory, Change, Computational Complexity, Cybernetics, Differential Analytic Turing Automata, Differential Calculus, Differential Logic, Discrete Dynamics, Dynamical Systems, Equational Inference, Functional Logic, Gradient Descent, Graph Theory, Group Theory, Hologrammautomaton, Indicator Functions, Logic, Logical Graphs, Mathematical Models, Mathematics, Minimal Negation Operators, Painted Cacti, Peirce, Propositional Calculus, Propositional Equation Reasoning Systems, Time, Visualization | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment

Differential Propositional Calculus • 1

A differential propositional calculus is a propositional calculus extended by a set of terms for describing aspects of change and difference, for example, processes taking place in a universe of discourse or transformations mapping a source universe to a target … Continue reading

Posted in Amphecks, Boolean Functions, C.S. Peirce, Cactus Graphs, Category Theory, Change, Computational Complexity, Cybernetics, Differential Analytic Turing Automata, Differential Calculus, Differential Logic, Discrete Dynamics, Dynamical Systems, Equational Inference, Functional Logic, Gradient Descent, Graph Theory, Group Theory, Hologrammautomaton, Indicator Functions, Logic, Logical Graphs, Mathematical Models, Mathematics, Minimal Negation Operators, Painted Cacti, Peirce, Propositional Calculus, Propositional Equation Reasoning Systems, Time, Visualization | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment

Differential Propositional Calculus • Overview

The most fundamental concept in cybernetics is that of “difference”, either that two things are recognisably different or that one thing has changed with time. W. Ross Ashby • An Introduction to Cybernetics Here’s the outline of a sketch I … Continue reading

Posted in Amphecks, Boolean Functions, C.S. Peirce, Cactus Graphs, Category Theory, Change, Computational Complexity, Cybernetics, Differential Analytic Turing Automata, Differential Calculus, Differential Logic, Discrete Dynamics, Dynamical Systems, Equational Inference, Functional Logic, Gradient Descent, Graph Theory, Group Theory, Hologrammautomaton, Indicator Functions, Logic, Logical Graphs, Mathematical Models, Mathematics, Minimal Negation Operators, Painted Cacti, Peirce, Propositional Calculus, Propositional Equation Reasoning Systems, Time, Visualization | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment

Peirce’s 1870 “Logic Of Relatives” • Discussion 2

Re: Ecology of Systems Thinking • RS • TM My previous comment summed up my observations of a general drift toward “absolutist and dyadic ways of thinking” in various communities of inquiry of interest to me over the past 20 … Continue reading

Posted in C.S. Peirce, Category Theory, Differential Logic, Duality, Dyadic Relations, Graph Theory, Group Theory, Logic, Logic of Relatives, Logical Graphs, Logical Matrices, Mathematics, Peirce, Peirce's Categories, Predicate Calculus, Propositional Calculus, Relation Theory, Semiotics, Sign Relations, Teridentity, Triadic Relations, Visualization | Tagged , , , , , , , , , , , , , , , , , , , , , | Leave a comment

Peirce’s 1870 “Logic Of Relatives” • Comment 2

In a recent post on a related topic I gave this assessment of our present situation: One of the more disconcerting developments, I might say “devolutions”, I’ve observed over the past 20 years has been the general slippage back to … Continue reading

Posted in C.S. Peirce, Category Theory, Differential Logic, Duality, Dyadic Relations, Graph Theory, Group Theory, Logic, Logic of Relatives, Logical Graphs, Logical Matrices, Mathematics, Peirce, Peirce's Categories, Predicate Calculus, Propositional Calculus, Relation Theory, Semiotics, Sign Relations, Teridentity, Triadic Relations, Visualization | Tagged , , , , , , , , , , , , , , , , , , , , , | 1 Comment

Peirce’s 1870 “Logic Of Relatives” • Comment 1

Peirce often stressed his Logic of Relatives as the key to unlocking many puzzles.  As I read him, it was Peirce’s drive to understand the Logic of Science that required the grounding of logic in the mathematical forms of triadic … Continue reading

Posted in C.S. Peirce, Category Theory, Differential Logic, Duality, Dyadic Relations, Graph Theory, Group Theory, Logic, Logic of Relatives, Logical Graphs, Logical Matrices, Mathematics, Peirce, Peirce's Categories, Predicate Calculus, Propositional Calculus, Relation Theory, Semiotics, Sign Relations, Teridentity, Triadic Relations, Visualization | Tagged , , , , , , , , , , , , , , , , , , , , , | Leave a comment

Peirce’s 1870 “Logic Of Relatives” • Discussion 1

Re: Ontolog Forum • John Bottoms Re: History View Blog • A Yukaghir Girl Writes A Love Letter Re: Peirce’s 1870 “Logic Of Relatives” • Proto-Graphical Syntax John Bottoms, writing in the Ontolog Forum, compared the graphic I drew for … Continue reading

Posted in C.S. Peirce, Category Theory, Differential Logic, Duality, Dyadic Relations, Graph Theory, Group Theory, Logic, Logic of Relatives, Logical Graphs, Logical Matrices, Mathematics, Peirce, Peirce's Categories, Predicate Calculus, Propositional Calculus, Relation Theory, Semiotics, Sign Relations, Teridentity, Triadic Relations, Visualization | Tagged , , , , , , , , , , , , , , , , , , , , , | Leave a comment

Peirce’s 1870 “Logic Of Relatives” • Overview

My long ago encounter with Peirce’s 1870 paper, “Description of a Notation for the Logic of Relatives, Resulting from an Amplification of the Conceptions of Boole’s Calculus of Logic”, was one of the events precipitating my return from the hazier … Continue reading

Posted in C.S. Peirce, Category Theory, Differential Logic, Duality, Dyadic Relations, Graph Theory, Group Theory, Logic, Logic of Relatives, Logical Graphs, Logical Matrices, Mathematics, Peirce, Peirce's Categories, Predicate Calculus, Propositional Calculus, Relation Theory, Semiotics, Sign Relations, Teridentity, Triadic Relations, Visualization | Tagged , , , , , , , , , , , , , , , , , , , , , | 3 Comments

Riffs and Rotes • 4

Prompted by a recent discussion of prime numbers and complex dynamics on one of the Santa Fe Institute’s FaceBook pages, I posted a link to an old project of mine, going back to a time when I was first learning programming … Continue reading

Posted in Algebra, Combinatorics, Graph Theory, Group Theory, Logic, Mathematics, Number Theory, Riffs and Rotes | Tagged , , , , , , , | Leave a comment