Tag Archives: Category Theory

Survey of Relation Theory • 9

In the present Survey of blog and wiki resources for Relation Theory, relations are viewed from the perspective of combinatorics, in other words, as a topic in discrete mathematics, with special attention to finite structures and concrete set‑theoretic constructions, many … Continue reading

Posted in Algebra, Algebra of Logic, C.S. Peirce, Category Theory, Combinatorics, Discrete Mathematics, Duality, Dyadic Relations, Formal Languages, Foundations of Mathematics, Graph Theory, Group Theory, Logic, Logic of Relatives, Logical Graphs, Mathematics, Model Theory, Relation Theory, Semiotics, Set Theory, Sign Relational Manifolds, Sign Relations, Triadic Relations, Type Theory | Tagged , , , , , , , , , , , , , , , , , , , , , , , | 10 Comments

Survey of Precursors Of Category Theory • 6

A few years ago I began a sketch on the “Precursors of Category Theory”, tracing the continuities of the category concept from Aristotle, to Kant and Peirce, through Hilbert and Ackermann, to contemporary mathematical practice.  A Survey of resources on … Continue reading

Posted in Abstraction, Ackermann, Analogy, Aristotle, C.S. Peirce, Carnap, Category Theory, Foundations of Mathematics, Hilbert, Hypostatic Abstraction, Kant, Logic, Mathematics, Propositions As Types Analogy, Relation Theory, Saunders Mac Lane, Semiotics, Type Theory, Universals | Tagged , , , , , , , , , , , , , , , , , , | 2 Comments

Survey of Differential Logic • 8

This is a Survey of work in progress on Differential Logic, resources under development toward a more systematic treatment. Differential logic is the component of logic whose object is the description of variation — the aspects of change, difference, distribution, … Continue reading

Posted in Amphecks, Animata, Boolean Algebra, Boolean Functions, C.S. Peirce, Cactus Graphs, Category Theory, Change, Cybernetics, Differential Analytic Turing Automata, Differential Calculus, Differential Logic, Discrete Dynamics, Equational Inference, Frankl Conjecture, Functional Logic, Gradient Descent, Graph Theory, Hologrammautomaton, Inquiry Driven Systems, Leibniz, Logic, Logical Graphs, Mathematics, Minimal Negation Operators, Propositional Calculus, Visualization | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment

Signs Of Signs • 4

Re: Michael Harris • Language About Language But then inevitably I find myself wondering whether a proof assistant, or even a formal system, can make the distinction between “technical” and “fundamental” questions.  There seems to be no logical distinction.  The … Continue reading

Posted in Aesthetics, C.S. Peirce, Category Theory, Coherentism, Communication, Connotation, Form, Formal Languages, Foundations of Mathematics, Higher Order Propositions, Illusion, Inquiry, Inquiry Into Inquiry, Interpretation, Interpretive Frameworks, Logic, Mathematics, Objective Frameworks, Objectivism, Pragmatic Semiotic Information, Pragmatics, Pragmatism, Recursion, Reflection, Semantics, Semiotics, Sign Relations, Syntax, Translation, Triadic Relations, Type Theory | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 3 Comments

Signs Of Signs • 3

Re: Michael Harris • Language About Language And if we don’t [keep our stories straight], who puts us away? One’s answer, or at least one’s initial response to that question will turn on how one feels about formal realities.  As … Continue reading

Posted in Aesthetics, C.S. Peirce, Category Theory, Coherentism, Communication, Connotation, Form, Formal Languages, Foundations of Mathematics, Higher Order Propositions, Illusion, Inquiry, Inquiry Into Inquiry, Interpretation, Interpretive Frameworks, Logic, Mathematics, Objective Frameworks, Objectivism, Pragmatic Semiotic Information, Pragmatics, Pragmatism, Recursion, Reflection, Semantics, Semiotics, Sign Relations, Syntax, Translation, Triadic Relations, Type Theory | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 2 Comments

Signs Of Signs • 2

Re: Michael Harris • Language About Language I compared mathematics to a “consensual hallucination”, like virtual reality, and I continue to believe that the aim is to get (consensually) to the point where that hallucination is a second nature. I … Continue reading

Posted in Aesthetics, C.S. Peirce, Category Theory, Coherentism, Communication, Connotation, Form, Formal Languages, Foundations of Mathematics, Higher Order Propositions, Illusion, Inquiry, Inquiry Into Inquiry, Interpretation, Interpretive Frameworks, Logic, Mathematics, Objective Frameworks, Objectivism, Pragmatic Semiotic Information, Pragmatics, Pragmatism, Recursion, Reflection, Semantics, Semiotics, Sign Relations, Syntax, Translation, Triadic Relations, Type Theory | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 2 Comments

Signs Of Signs • 1

Re: Michael Harris • Language About Language There is a language and a corresponding literature treating logic and mathematics as related species of communication and information gathering, namely, the pragmatic‑semiotic tradition transmitted through the lifelong efforts of C.S. Peirce.  It is … Continue reading

Posted in Aesthetics, C.S. Peirce, Category Theory, Coherentism, Communication, Connotation, Form, Formal Languages, Foundations of Mathematics, Higher Order Propositions, Illusion, Inquiry, Inquiry Into Inquiry, Interpretation, Interpretive Frameworks, Logic, Mathematics, Objective Frameworks, Objectivism, Pragmatic Semiotic Information, Pragmatics, Pragmatism, Recursion, Reflection, Semantics, Semiotics, Sign Relations, Syntax, Translation, Triadic Relations, Type Theory | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 3 Comments

Differential Propositional Calculus • 37

Foreshadowing Transformations • Extensions and Projections of Discourse And, despite the care which she took to look behind her at every moment, she failed to see a shadow which followed her like her own shadow, which stopped when she stopped, … Continue reading

Posted in Amphecks, Animata, Boolean Algebra, Boolean Functions, C.S. Peirce, Cactus Graphs, Category Theory, Change, Cybernetics, Differential Analytic Turing Automata, Differential Calculus, Differential Logic, Discrete Dynamics, Equational Inference, Functional Logic, Graph Theory, Hologrammautomaton, Indicator Functions, Inquiry Driven Systems, Leibniz, Logic, Logical Graphs, Mathematics, Minimal Negation Operators, Propositional Calculus, Time, Topology, Visualization | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , | 3 Comments

Differential Propositional Calculus • 36

Transformations of Discourse It is understandable that an engineer should be completely absorbed in his speciality, instead of pouring himself out into the freedom and vastness of the world of thought, even though his machines are being sent off to … Continue reading

Posted in Amphecks, Animata, Boolean Algebra, Boolean Functions, C.S. Peirce, Cactus Graphs, Category Theory, Change, Cybernetics, Differential Analytic Turing Automata, Differential Calculus, Differential Logic, Discrete Dynamics, Equational Inference, Functional Logic, Graph Theory, Hologrammautomaton, Indicator Functions, Inquiry Driven Systems, Leibniz, Logic, Logical Graphs, Mathematics, Minimal Negation Operators, Propositional Calculus, Time, Topology, Visualization | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , | 3 Comments

Differential Propositional Calculus • 35

Example 2. Drives and Their Vicissitudes (concl.) Applied to the example of ‑gear curves, the indexing scheme results in the data of the next two Tables, showing one period for each orbit. The states in each orbit are listed as … Continue reading

Posted in Amphecks, Animata, Boolean Algebra, Boolean Functions, C.S. Peirce, Cactus Graphs, Category Theory, Change, Cybernetics, Differential Analytic Turing Automata, Differential Calculus, Differential Logic, Discrete Dynamics, Equational Inference, Functional Logic, Graph Theory, Hologrammautomaton, Indicator Functions, Inquiry Driven Systems, Leibniz, Logic, Logical Graphs, Mathematics, Minimal Negation Operators, Propositional Calculus, Time, Topology, Visualization | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , | 4 Comments