Category Archives: Relation Theory

Praeclarum Theorema • 2

Re: Praeclarum Theorema • 1 And here’s a neat proof of that nice theorem — Reference Leibniz, Gottfried W. (1679–1686?), “Addenda to the Specimen of the Universal Calculus”, pp. 40–46 in G.H.R. Parkinson (ed., trans., 1966), Leibniz : Logical Papers, … Continue reading

Posted in Animata, C.S. Peirce, Cactus Graphs, Deduction, Equational Inference, Form, Laws of Form, Leibniz, Logic, Logical Graphs, Mathematics, Model Theory, Painted Cacti, Praeclarum Theorema, Proof Theory, Propositional Calculus, Propositional Equation Reasoning Systems, Relation Theory, Semiotics, Spencer Brown, Visualization | Tagged , , , , , , , , , , , , , , , , , , , , | 8 Comments

Praeclarum Theorema • 1

The praeclarum theorema, or splendid theorem, is a theorem of propositional calculus noted and named by G.W. Leibniz, who stated and proved it in the following manner. If a is b and d is c, then ad will be bc. This … Continue reading

Posted in Animata, C.S. Peirce, Cactus Graphs, Deduction, Equational Inference, Form, Laws of Form, Leibniz, Logic, Logical Graphs, Mathematics, Model Theory, Painted Cacti, Praeclarum Theorema, Proof Theory, Propositional Calculus, Propositional Equation Reasoning Systems, Relation Theory, Semiotics, Spencer Brown, Visualization | Tagged , , , , , , , , , , , , , , , , , , , , | 9 Comments

Logical Graphs • Discussion 9

Re: Logical Graphs • Formal Development Re: Laws of Form • Lyle Anderson LA: The Gestalt Switch from parenthesis to graphs is stimulating.  There are probably things in Laws of Form that we didn’t see because we were blinded by … Continue reading

Posted in Amphecks, Animata, Boolean Algebra, Boolean Functions, C.S. Peirce, Cactus Graphs, Constraint Satisfaction Problems, Deduction, Diagrammatic Reasoning, Duality, Equational Inference, Graph Theory, Laws of Form, Logic, Logical Graphs, Mathematics, Minimal Negation Operators, Painted Cacti, Propositional Calculus, Propositional Equation Reasoning Systems, Relation Theory, Semiotics, Sign Relations, Spencer Brown, Topology, Visualization | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , | 5 Comments

Praeclarum Theorema

Introduction The praeclarum theorema, or splendid theorem, is a theorem of propositional calculus noted and named by G.W. Leibniz, who stated and proved it in the following manner. If a is b and d is c, then ad will be bc. … Continue reading

Posted in Animata, C.S. Peirce, Cactus Graphs, Deduction, Equational Inference, Form, Laws of Form, Leibniz, Logic, Logical Graphs, Mathematics, Model Theory, Painted Cacti, Praeclarum Theorema, Proof Theory, Propositional Calculus, Propositional Equation Reasoning Systems, Relation Theory, Semiotics, Spencer Brown, Visualization | Tagged , , , , , , , , , , , , , , , , , , , , | 8 Comments

Logical Graphs • Discussion 8

Re: Logical Graphs • Formal Development Re: Laws of Form • Alex Shkotin Hi Alex, I got my first brush with graph theory in a course on the Foundations of Mathematics Frank Harary taught at the University of Michigan in 1970.  … Continue reading

Posted in Amphecks, Animata, Boolean Algebra, Boolean Functions, C.S. Peirce, Cactus Graphs, Constraint Satisfaction Problems, Deduction, Diagrammatic Reasoning, Duality, Equational Inference, Graph Theory, Laws of Form, Logic, Logical Graphs, Mathematics, Minimal Negation Operators, Painted Cacti, Propositional Calculus, Propositional Equation Reasoning Systems, Relation Theory, Semiotics, Sign Relations, Spencer Brown, Topology, Visualization | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , | 5 Comments

Logical Graphs • Discussion 7

Re: Logical Graphs • Formal Development Re: Laws of Form • Alex Shkotin AS: When we look at undirected graph it is usual, before describing a rules of graph transformation, to describe exactly what kind of graphs we are working … Continue reading

Posted in Amphecks, Animata, Boolean Algebra, Boolean Functions, C.S. Peirce, Cactus Graphs, Constraint Satisfaction Problems, Deduction, Diagrammatic Reasoning, Duality, Equational Inference, Graph Theory, Laws of Form, Logic, Logical Graphs, Mathematics, Minimal Negation Operators, Painted Cacti, Propositional Calculus, Propositional Equation Reasoning Systems, Relation Theory, Semiotics, Sign Relations, Spencer Brown, Topology, Visualization | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , | 5 Comments

Sign Relations, Triadic Relations, Relation Theory • Discussion 11

Re: Michael Shapiro • Redefining Arbitrariness in Language MS: The matter of arbitrariness in language is primarily associated with the work of the Swiss linguist, Ferdinand de Saussure (1857–1913), whose book of lectures, Cours de linguistique Générale, is widely recognized … Continue reading

Posted in C.S. Peirce, Icon Index Symbol, Information, Inquiry Driven Systems, Logic, Logic of Relatives, Mathematics, Peirce, Pragmatism, Relation Theory, Semiosis, Semiotics, Sign Relations, Triadic Relations, Triadicity, Visualization | Tagged , , , , , , , , , , , , , , , | 5 Comments

Logical Graphs • Discussion 6

Re: Logical Graphs • First Impressions Re: Academia.edu • Robert Appleton RA: As a professional graphic designer and non-mathematician reading your two diagrams, I need to ask for a simpler statement of their purpose.  What do Fig 1 and Fig 2 represent … Continue reading

Posted in Amphecks, Animata, Boolean Algebra, Boolean Functions, C.S. Peirce, Cactus Graphs, Constraint Satisfaction Problems, Deduction, Diagrammatic Reasoning, Duality, Equational Inference, Graph Theory, Laws of Form, Logic, Logical Graphs, Mathematics, Minimal Negation Operators, Painted Cacti, Propositional Calculus, Propositional Equation Reasoning Systems, Relation Theory, Semiotics, Sign Relations, Spencer Brown, Topology, Visualization | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , | 5 Comments

Logical Graphs • Discussion 5

Re: Logical Graphs • First Impressions Re: Facebook • Daniel Everett DE: Nice discussion.  Development of icon-based reasoning As it happens, even though Peirce’s systems of logical graphs do have iconic features, their real power over other sorts of logical … Continue reading

Posted in Amphecks, Animata, Boolean Algebra, Boolean Functions, C.S. Peirce, Cactus Graphs, Constraint Satisfaction Problems, Deduction, Diagrammatic Reasoning, Duality, Equational Inference, Graph Theory, Laws of Form, Logic, Logical Graphs, Mathematics, Minimal Negation Operators, Painted Cacti, Propositional Calculus, Propositional Equation Reasoning Systems, Relation Theory, Semiotics, Sign Relations, Spencer Brown, Topology, Visualization | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , | 5 Comments

Inquiry Into Inquiry • Discussion 9

Re: Pragmatic Maxim Re: Academia.edu • Milo Gardner MG: Do you agree that Peirce was limited to bivalent logic? Taking classical logic as a basis for reasoning is no more limiting than taking Dedekind cuts as a basis for constructing … Continue reading

Posted in Automata, C.S. Peirce, Category Theory, Compositionality, Formal Languages, Inference, Information, Information Fusion, Initiative, Inquiry, Logic, Relation Theory, Semiotics, Triadic Relation Irreducibility, Visualization | Tagged , , , , , , , , , , , , , , | 5 Comments