Monthly Archives: March 2025

Cactus Language • Preliminaries 1

Thus, what looks to us like a sphere of scientific knowledge more accurately should be represented as the inside of a highly irregular and spiky object, like a pincushion or porcupine, with very sharp extensions in certain directions, and virtually … Continue reading

Posted in Automata, Boolean Algebra, Boolean Functions, C.S. Peirce, Cactus Graphs, Differential Logic, Equational Inference, Formal Grammars, Formal Languages, Graph Theory, Logic, Logical Graphs, Mathematics, Minimal Negation Operators, Painted Cacti, Propositional Calculus, Visualization | Tagged , , , , , , , , , , , , , , , , | 3 Comments

Higher Order Sign Relations • Discussion 1

Re: FB | Charles S. Peirce Society • John Corcoran Questions about the proper treatment of use and mention from the standpoint of Peirce’s theory of signs came up recently in discussions on Facebook.  In pragmatic semiotics the trade‑off between … Continue reading

Posted in Arithmetization, C.S. Peirce, Gödel Numbers, Higher Order Sign Relations, Inquiry, Inquiry Driven Systems, Inquiry Into Inquiry, Logic, Mathematics, Quotation, Reflection, Reflective Interpretive Frameworks, Semiotics, Sign Relations, Triadic Relations, Use and Mention, Visualization | Tagged , , , , , , , , , , , , , , , , | 6 Comments

Higher Order Sign Relations • 1

Higher Order Sign Relations • Introduction When interpreters reflect on their use of signs they require an appropriate technical language in which to pursue their reflections.  They need signs referring to sign relations, signs referring to elements and components of … Continue reading

Posted in C.S. Peirce, Higher Order Sign Relations, Inquiry, Inquiry Into Inquiry, Logic, Mathematics, Recursion, Reflection, Relation Theory, Semiotics, Sign Relations, Triadic Relations, Type Theory | Tagged , , , , , , , , , , , , | 6 Comments

Signs Of Signs • 4

Re: Michael Harris • Language About Language But then inevitably I find myself wondering whether a proof assistant, or even a formal system, can make the distinction between “technical” and “fundamental” questions.  There seems to be no logical distinction.  The … Continue reading

Posted in Aesthetics, C.S. Peirce, Category Theory, Coherentism, Communication, Connotation, Form, Formal Languages, Foundations of Mathematics, Higher Order Propositions, Illusion, Inquiry, Inquiry Into Inquiry, Interpretation, Interpretive Frameworks, Logic, Mathematics, Objective Frameworks, Objectivism, Pragmatic Semiotic Information, Pragmatics, Pragmatism, Recursion, Reflection, Semantics, Semiotics, Sign Relations, Syntax, Translation, Triadic Relations, Type Theory | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 3 Comments

Signs Of Signs • 3

Re: Michael Harris • Language About Language And if we don’t [keep our stories straight], who puts us away? One’s answer, or at least one’s initial response to that question will turn on how one feels about formal realities.  As … Continue reading

Posted in Aesthetics, C.S. Peirce, Category Theory, Coherentism, Communication, Connotation, Form, Formal Languages, Foundations of Mathematics, Higher Order Propositions, Illusion, Inquiry, Inquiry Into Inquiry, Interpretation, Interpretive Frameworks, Logic, Mathematics, Objective Frameworks, Objectivism, Pragmatic Semiotic Information, Pragmatics, Pragmatism, Recursion, Reflection, Semantics, Semiotics, Sign Relations, Syntax, Translation, Triadic Relations, Type Theory | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 2 Comments

Signs Of Signs • 2

Re: Michael Harris • Language About Language I compared mathematics to a “consensual hallucination”, like virtual reality, and I continue to believe that the aim is to get (consensually) to the point where that hallucination is a second nature. I … Continue reading

Posted in Aesthetics, C.S. Peirce, Category Theory, Coherentism, Communication, Connotation, Form, Formal Languages, Foundations of Mathematics, Higher Order Propositions, Illusion, Inquiry, Inquiry Into Inquiry, Interpretation, Interpretive Frameworks, Logic, Mathematics, Objective Frameworks, Objectivism, Pragmatic Semiotic Information, Pragmatics, Pragmatism, Recursion, Reflection, Semantics, Semiotics, Sign Relations, Syntax, Translation, Triadic Relations, Type Theory | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 2 Comments

Signs Of Signs • 1

Re: Michael Harris • Language About Language There is a language and a corresponding literature treating logic and mathematics as related species of communication and information gathering, namely, the pragmatic‑semiotic tradition transmitted through the lifelong efforts of C.S. Peirce.  It is … Continue reading

Posted in Aesthetics, C.S. Peirce, Category Theory, Coherentism, Communication, Connotation, Form, Formal Languages, Foundations of Mathematics, Higher Order Propositions, Illusion, Inquiry, Inquiry Into Inquiry, Interpretation, Interpretive Frameworks, Logic, Mathematics, Objective Frameworks, Objectivism, Pragmatic Semiotic Information, Pragmatics, Pragmatism, Recursion, Reflection, Semantics, Semiotics, Sign Relations, Syntax, Translation, Triadic Relations, Type Theory | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 3 Comments

Cactus Language • Overview 4

Depending on whether a formal language is called by the type of sign it enlists or the type of object its signs denote, a cactus language may be called a sentential calculus or a propositional calculus, respectively. When the syntactic … Continue reading

Posted in Automata, Boolean Algebra, Boolean Functions, C.S. Peirce, Cactus Graphs, Differential Logic, Equational Inference, Formal Grammars, Formal Languages, Graph Theory, Logic, Logical Graphs, Mathematics, Minimal Negation Operators, Painted Cacti, Propositional Calculus, Visualization | Tagged , , , , , , , , , , , , , , , , | 3 Comments

Cactus Language • Overview 3

In the development of Cactus Language to date the following two species of graphs have been instrumental. Painted And Rooted Cacti (PARCAI). Painted And Rooted Conifers (PARCOI). It suffices to begin with the first class of data structures, developing their … Continue reading

Posted in Automata, Boolean Algebra, Boolean Functions, C.S. Peirce, Cactus Graphs, Differential Logic, Equational Inference, Formal Grammars, Formal Languages, Graph Theory, Logic, Logical Graphs, Mathematics, Minimal Negation Operators, Painted Cacti, Propositional Calculus, Visualization | Tagged , , , , , , , , , , , , , , , , | 3 Comments

Cactus Language • Overview 2

In order to facilitate the use of propositions as indicator functions it helps to acquire a flexible notation for referring to propositions in that light, for interpreting sentences in a corresponding role, and for negotiating the requirements of mutual sense … Continue reading

Posted in Automata, Boolean Algebra, Boolean Functions, C.S. Peirce, Cactus Graphs, Differential Logic, Equational Inference, Formal Grammars, Formal Languages, Graph Theory, Logic, Logical Graphs, Mathematics, Minimal Negation Operators, Painted Cacti, Propositional Calculus, Visualization | Tagged , , , , , , , , , , , , , , , , | 4 Comments