Animated Logical Graphs • 50

Re: Richard J. LiptonThe Art Of Math
Re: Animated Logical Graphs • (30) (45) (46) (47) (48) (49)

In the last of our six ways of looking at the Peirce duality between entitative and existential interpretations, we consider the previous Table of Logical Graphs and Venn Diagrams sorted in Orbit Order.

Logical Graphs • Entitative and Existential Venn Diagrams • Orbit Order
\text{Logical Graph} \text{Entitative Interpretation} \text{Existential Interpretation}
Cactus Stem
 
f₁₅(x,y) f₀(x,y)
\texttt{(} ~ \texttt{)}
 
\text{true}
f_{15}
\text{false}
f_{0}
Cactus (x)(y)
 
f₇(x,y) f₁(x,y)
\texttt{(} x \texttt{)(} y \texttt{)}
 
\lnot x \lor \lnot y
f_{7}
\lnot x \land \lnot y
f_{1}
Cactus (x)y
 
f₁₁(x,y) f₂(x,y)
\texttt{(} x \texttt{)} y
 
x \Rightarrow y
f_{11}
x \nLeftarrow y
f_{2}
Cactus x(y)
 
f₁₃(x,y) f₄(x,y)
x \texttt{(} y \texttt{)}
 
x \Leftarrow y
f_{13}
x \nRightarrow y
f_{4}
Cactus xy
 
f₁₄(x,y) f₈(x,y)
x y
 
x \lor y
f_{14}
x \land y
f_{8}
Cactus (x)
 
f₃(x,y) f₃(x,y)
\texttt{(} x \texttt{)}
 
\lnot x
f_{3}
\lnot x
f_{3}
Cactus x
 
f₁₂(x,y) f₁₂(x,y)
x
 
x
f_{12}
x
f_{12}
Cactus (x,y)
 
f₉(x,y) f₆(x,y)
\texttt{(} x \texttt{,} y \texttt{)}
 
x = y
f_{9}
x \ne y
f_{6}
Cactus ((x,y))
 
f₆(x,y) f₉(x,y)
\texttt{((} x \texttt{,} y \texttt{))}
 
x \ne y
f_{6}
x = y
f_{9}
Cactus (y)
 
f₅(x,y) f₅(x,y)
\texttt{(} y \texttt{)}
 
\lnot y
f_{5}
\lnot y
f_{5}
Cactus y
 
f₁₀(x,y) f₁₀(x,y)
y
 
y
f_{10}
y
f_{10}
Cactus (xy)
 
f₁(x,y) f₇(x,y)
\texttt{(} x y \texttt{)}
 
\lnot (x \lor y)
f_{1}
\lnot (x \land y)
f_{7}
Cactus (x(y))
 
f₂(x,y) f₁₁(x,y)
\texttt{(} x \texttt{(} y \texttt{))}
 
x \nLeftarrow y
f_{2}
x \Rightarrow y
f_{11}
Cactus ((x)y)
 
f₄(x,y) f₁₃(x,y)
\texttt{((} x \texttt{)} y \texttt{)}
 
x \nRightarrow y
f_{4}
x \Leftarrow y
f_{13}
Cactus ((x)(y))
 
f₈(x,y) f₁₄(x,y)
\texttt{((} x \texttt{)(} y \texttt{))}
 
x \land y
f_{8}
x \lor y
f_{14}
Cactus Root
 
f₀(x,y) f₁₅(x,y)
 
 
\text{false}
f_{0}
\text{true}
f_{15}

Resources

cc: Cybernetics Communications (1) (2)FB | Logical Graphs • Ontolog Forum (1) (2)
cc: Peirce (1) (2) (3) (4) (5) (6) (7) (8) (9) • Structural Modeling (1) (2) • Systems (1) (2)

This entry was posted in Amphecks, Animata, Boolean Algebra, Boolean Functions, C.S. Peirce, Cactus Graphs, Constraint Satisfaction Problems, Deduction, Diagrammatic Reasoning, Duality, Equational Inference, Graph Theory, Laws of Form, Logic, Logical Graphs, Mathematics, Minimal Negation Operators, Model Theory, Painted Cacti, Peirce, Proof Theory, Propositional Calculus, Propositional Equation Reasoning Systems, Spencer Brown, Theorem Proving, Visualization and tagged , , , , , , , , , , , , , , , , , , , , , , , , , . Bookmark the permalink.