Tag Archives: Computational Complexity

Differential Propositional Calculus • 4

Special Classes of Propositions Before moving on, let’s unpack some of the assumptions, conventions, and implications involved in the array of concepts and notations introduced above. A universe of discourse based on the logical features is a set plus the … Continue reading

Posted in Amphecks, Boolean Functions, C.S. Peirce, Cactus Graphs, Category Theory, Change, Computational Complexity, Cybernetics, Differential Analytic Turing Automata, Differential Calculus, Differential Logic, Discrete Dynamics, Dynamical Systems, Equational Inference, Functional Logic, Gradient Descent, Graph Theory, Group Theory, Hologrammautomaton, Indicator Functions, Logic, Logical Graphs, Mathematical Models, Mathematics, Minimal Negation Operators, Painted Cacti, Peirce, Propositional Calculus, Propositional Equation Reasoning Systems, Time, Visualization | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 1 Comment

Differential Propositional Calculus • 3

Formal Development The preceding discussion outlined the ideas leading to the differential extension of propositional logic.  The next task is to lay out the concepts and terminology needed to describe various orders of differential propositional calculi. Elementary Notions Logical description … Continue reading

Posted in Amphecks, Boolean Functions, C.S. Peirce, Cactus Graphs, Category Theory, Change, Computational Complexity, Cybernetics, Differential Analytic Turing Automata, Differential Calculus, Differential Logic, Discrete Dynamics, Dynamical Systems, Equational Inference, Functional Logic, Gradient Descent, Graph Theory, Group Theory, Hologrammautomaton, Indicator Functions, Logic, Logical Graphs, Mathematical Models, Mathematics, Minimal Negation Operators, Painted Cacti, Peirce, Propositional Calculus, Propositional Equation Reasoning Systems, Time, Visualization | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 1 Comment

Differential Propositional Calculus • 2

Cactus Calculus Table 6 outlines a syntax for propositional calculus based on two types of logical connectives, both of variable -ary scope. A bracketed list of propositional expressions in the form indicates exactly one of the propositions is false. A … Continue reading

Posted in Amphecks, Boolean Functions, C.S. Peirce, Cactus Graphs, Category Theory, Change, Computational Complexity, Cybernetics, Differential Analytic Turing Automata, Differential Calculus, Differential Logic, Discrete Dynamics, Dynamical Systems, Equational Inference, Functional Logic, Gradient Descent, Graph Theory, Group Theory, Hologrammautomaton, Indicator Functions, Logic, Logical Graphs, Mathematical Models, Mathematics, Minimal Negation Operators, Painted Cacti, Peirce, Propositional Calculus, Propositional Equation Reasoning Systems, Time, Visualization | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 1 Comment

Differential Propositional Calculus • 1

A differential propositional calculus is a propositional calculus extended by a set of terms for describing aspects of change and difference, for example, processes taking place in a universe of discourse or transformations mapping a source universe to a target … Continue reading

Posted in Amphecks, Boolean Functions, C.S. Peirce, Cactus Graphs, Category Theory, Change, Computational Complexity, Cybernetics, Differential Analytic Turing Automata, Differential Calculus, Differential Logic, Discrete Dynamics, Dynamical Systems, Equational Inference, Functional Logic, Gradient Descent, Graph Theory, Group Theory, Hologrammautomaton, Indicator Functions, Logic, Logical Graphs, Mathematical Models, Mathematics, Minimal Negation Operators, Painted Cacti, Peirce, Propositional Calculus, Propositional Equation Reasoning Systems, Time, Visualization | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 1 Comment

Differential Propositional Calculus • Overview

The most fundamental concept in cybernetics is that of “difference”, either that two things are recognisably different or that one thing has changed with time. W. Ross Ashby • An Introduction to Cybernetics Here’s the outline of a sketch I … Continue reading

Posted in Amphecks, Boolean Functions, C.S. Peirce, Cactus Graphs, Category Theory, Change, Computational Complexity, Cybernetics, Differential Analytic Turing Automata, Differential Calculus, Differential Logic, Discrete Dynamics, Dynamical Systems, Equational Inference, Functional Logic, Gradient Descent, Graph Theory, Group Theory, Hologrammautomaton, Indicator Functions, Logic, Logical Graphs, Mathematical Models, Mathematics, Minimal Negation Operators, Painted Cacti, Peirce, Propositional Calculus, Propositional Equation Reasoning Systems, Time, Visualization | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 7 Comments

Differential Logic and Dynamic Systems • Overview

In modeling intelligent systems, whether we are trying to understand a natural system or engineer an artificial system, there has long been a tension or trade-off between dynamic paradigms and symbolic paradigms.  Dynamic models take their cue from physics, using … Continue reading

Posted in Amphecks, Boolean Functions, C.S. Peirce, Cactus Graphs, Category Theory, Change, Computational Complexity, Cybernetics, Differential Analytic Turing Automata, Differential Calculus, Differential Logic, Discrete Dynamics, Dynamical Systems, Equational Inference, Functional Logic, Gradient Descent, Graph Theory, Group Theory, Hologrammautomaton, Indicator Functions, Logic, Logical Graphs, Mathematical Models, Mathematics, Minimal Negation Operators, Painted Cacti, Peirce, Propositional Calculus, Propositional Equation Reasoning Systems, Time, Visualization | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 8 Comments

Survey of Animated Logical Graphs • 2

This is one of several Survey posts I’ll be drafting from time to time, starting with minimal stubs and collecting links to the better variations on persistent themes I’ve worked on over the years.  After that I’ll look to organizing … Continue reading

Posted in Abstraction, Amphecks, Animata, Boole, Boolean Algebra, Boolean Functions, C.S. Peirce, Cactus Graphs, Computational Complexity, Constraint Satisfaction Problems, Equational Inference, Graph Theory, Laws of Form, Logic, Logical Graphs, Mathematics, Minimal Negation Operators, Painted Cacti, Peirce, Propositional Calculus, Propositional Equation Reasoning Systems, Spencer Brown, Surveys, Theorem Proving, Visualization, Zeroth Order Logic | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , | 19 Comments

Where Is Fancy Bred? • Comment 1

Re: Artem Kaznatcheev • Labyrinth : Fitness Landscapes As Mazes, Not Mountains A species in progress, with its naturally evolved organs of sensitivity, effectivity, and discernment, in its trials to learn the properties of its environment, cannot be expected to … Continue reading

Posted in Adaptive Systems, Analogy, Artem Kaznatcheev, Artificial Intelligence, Biological Systems, Communication, Computational Complexity, Control, Evolution, Fitness Landscapes, Imagination, Information, Inquiry, Inquiry Driven Systems, Learning Theory, Mathematical Models, Mental Models, Natural Intelligence, Semiotics, Sign Relations | Tagged , , , , , , , , , , , , , , , , , , , | Leave a comment

Theme One Program • Motivation 6

Comments I made in reply to a correspondent’s questions about delimiters and tokenizing in the Learner module may be worth sharing here. As a part of my M.A. work in psychology I applied my Theme One program to samples of … Continue reading

Posted in Algorithms, Animata, Artificial Intelligence, Boolean Functions, C.S. Peirce, Cactus Graphs, Computation, Computational Complexity, Cybernetics, Data Structures, Differential Logic, Form, Formal Languages, Graph Theory, Inquiry, Inquiry Driven Systems, Intelligent Systems, Laws of Form, Learning, Logic, Logical Graphs, Mathematics, Minimal Negation Operators, Painted Cacti, Peirce, Pragmatics, Programming, Propositional Calculus, Propositional Equation Reasoning Systems, Reasoning, Semantics, Semiotics, Sign Relations, Spencer Brown, Syntax, Visualization | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 2 Comments

Theme One Program • Motivation 5

As I’m working from 40-year-old memories of these first inklings I thought I might peruse the web for current information about Zipf’s Law.  I see there is now something called the Zipf–Mandelbrot (and sometimes –Pareto) Law and that was interesting … Continue reading

Posted in Algorithms, Animata, Artificial Intelligence, Boolean Functions, C.S. Peirce, Cactus Graphs, Computation, Computational Complexity, Cybernetics, Data Structures, Differential Logic, Form, Formal Languages, Graph Theory, Inquiry, Inquiry Driven Systems, Intelligent Systems, Laws of Form, Learning, Logic, Logical Graphs, Mathematics, Minimal Negation Operators, Painted Cacti, Peirce, Pragmatics, Programming, Propositional Calculus, Propositional Equation Reasoning Systems, Reasoning, Semantics, Semiotics, Sign Relations, Spencer Brown, Syntax, Visualization | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 2 Comments