Category Archives: Relation Theory

Precursors Of Category Theory • 4

C.S. Peirce • “Prolegomena to an Apology for Pragmaticism” (1906) I will now say a few words about what you have called Categories, but for which I prefer the designation Predicaments, and which you have explained as predicates of predicates. … Continue reading

Posted in Abstraction, Ackermann, Aristotle, C.S. Peirce, Carnap, Category Theory, Hilbert, Kant, Logic, Logic of Relatives, Mathematics, Peirce, Peirce's Categories, Relation Theory, Saunders Mac Lane, Sign Relations, Type Theory | Tagged , , , , , , , , , , , , , , , , | 3 Comments

Precursors Of Category Theory • 3

Act only according to that maxim by which you can at the same time will that it should become a universal law. Immanuel Kant (1785) C.S. Peirce • “On a New List of Categories” (1867) §1.  This paper is based … Continue reading

Posted in Abstraction, Ackermann, Aristotle, C.S. Peirce, Carnap, Category Theory, Hilbert, Kant, Logic, Logic of Relatives, Mathematics, Peirce, Peirce's Categories, Relation Theory, Saunders Mac Lane, Sign Relations, Type Theory | Tagged , , , , , , , , , , , , , , , , | 3 Comments

Precursors Of Category Theory • 2

Thanks to art, instead of seeing one world only, our own, we see that world multiply itself and we have at our disposal as many worlds as there are original artists … ☙ Marcel Proust When it comes to looking … Continue reading

Posted in Abstraction, Ackermann, Aristotle, C.S. Peirce, Carnap, Category Theory, Hilbert, Kant, Logic, Logic of Relatives, Mathematics, Peirce, Peirce's Categories, Relation Theory, Saunders Mac Lane, Sign Relations, Type Theory | Tagged , , , , , , , , , , , , , , , , | 4 Comments

Precursors Of Category Theory • 1

A few years ago I began a sketch on the “Precursors of Category Theory”, tracing the continuities of the category concept from Aristotle, to Kant and Peirce, through Hilbert and Ackermann, to contemporary mathematical practice.  My notes on the project … Continue reading

Posted in Abstraction, Ackermann, Aristotle, C.S. Peirce, Carnap, Category Theory, Hilbert, Kant, Logic, Logic of Relatives, Mathematics, Peirce, Peirce's Categories, Relation Theory, Saunders Mac Lane, Sign Relations, Type Theory | Tagged , , , , , , , , , , , , , , , , | 3 Comments

Survey of Precursors Of Category Theory • 5

A few years ago I began a sketch on the “Precursors of Category Theory”, tracing the continuities of the category concept from Aristotle, to Kant and Peirce, through Hilbert and Ackermann, to contemporary mathematical practice.  A Survey of resources on … Continue reading

Posted in Abstraction, Ackermann, Analogy, Aristotle, C.S. Peirce, Carnap, Category Theory, Diagrams, Foundations of Mathematics, Functional Logic, Hilbert, History of Mathematics, Hypostatic Abstraction, Kant, Logic, Mathematics, Peirce, Propositions As Types Analogy, Relation Theory, Saunders Mac Lane, Semiotics, Type Theory, Universals | Tagged , , , , , , , , , , , , , , , , , , , , , , | 10 Comments

Peirce’s 1885 “Algebra of Logic” • Discussion 2

Re: FB | Daniel Everett One thing I’ve been trying to understand for a very long time is the changes in Peirce’s writing about math and logic from 1865 to 1885.  If there’s anything I’ve learned from reading Peirce in … Continue reading

Posted in Algebra of Logic, C.S. Peirce, Deduction, Diagrammatic Reasoning, Icon Index Symbol, Logic, Logic of Relatives, Mathematics, Philosophy of Notation, Relation Theory, Semiotics, Sign Relations, Triadic Relations, Visualization | Tagged , , , , , , , , , , , , , | 2 Comments

Peirce’s 1885 “Algebra of Logic” • Discussion 1

Re: FB | Daniel Everett DE: One of the most important papers in the history of logic.  “On the Algebra of Logic” was the first to introduce the term “quantifier”. Peirce, C.S. (1885), “On the Algebra of Logic : A … Continue reading

Posted in Algebra of Logic, C.S. Peirce, Deduction, Diagrammatic Reasoning, Icon Index Symbol, Logic, Logic of Relatives, Mathematics, Philosophy of Notation, Relation Theory, Semiotics, Sign Relations, Triadic Relations, Visualization | Tagged , , , , , , , , , , , , , | 2 Comments

Peirce’s 1885 “Algebra of Logic” • Selection 4

Selection from C.S. Peirce, “On the Algebra of Logic : A Contribution to the Philosophy of Notation” (1885) §1.  Three Kinds Of Signs (concl.) In this paper, I purpose to develop an algebra adequate to the treatment of all problems … Continue reading

Posted in Algebra of Logic, C.S. Peirce, Deduction, Diagrammatic Reasoning, Icon Index Symbol, Logic, Logic of Relatives, Mathematics, Philosophy of Notation, Relation Theory, Semiotics, Sign Relations, Triadic Relations, Visualization | Tagged , , , , , , , , , , , , , | 8 Comments

Peirce’s 1885 “Algebra of Logic” • Selection 3

Selection from C.S. Peirce, “On the Algebra of Logic : A Contribution to the Philosophy of Notation” (1885) §1.  Three Kinds Of Signs (cont.) For instance, take the syllogistic formula, This is really a diagram of the relations of and … Continue reading

Posted in Algebra of Logic, C.S. Peirce, Deduction, Diagrammatic Reasoning, Icon Index Symbol, Logic, Logic of Relatives, Mathematics, Philosophy of Notation, Relation Theory, Semiotics, Sign Relations, Triadic Relations, Visualization | Tagged , , , , , , , , , , , , , | 8 Comments

Peirce’s 1885 “Algebra of Logic” • Selection 2

Selection from C.S. Peirce, “On the Algebra of Logic : A Contribution to the Philosophy of Notation” (1885) §1.  Three Kinds Of Signs (cont.) I have taken pains to make my distinction of icons, indices, and tokens clear, in order … Continue reading

Posted in Algebra of Logic, C.S. Peirce, Deduction, Diagrammatic Reasoning, Icon Index Symbol, Logic, Logic of Relatives, Mathematics, Philosophy of Notation, Relation Theory, Semiotics, Sign Relations, Triadic Relations, Visualization | Tagged , , , , , , , , , , , , , | 8 Comments