Category Archives: Deduction

Information = Comprehension × Extension • Selection 1

Our first text comes from Peirce’s Lowell Lectures of 1866, titled “The Logic of Science, or, Induction and Hypothesis”.  I still remember the first time I read these words and the light that lit up the page and my mind. … Continue reading

Posted in Abduction, C.S. Peirce, Comprehension, Deduction, Extension, Hypothesis, Icon Index Symbol, Induction, Inference, Information = Comprehension × Extension, Inquiry, Intension, Logic, Peirce's Categories, Pragmatic Semiotic Information, Pragmatism, Scientific Method, Semiotics, Sign Relations | Tagged , , , , , , , , , , , , , , , , , , | 8 Comments

Information = Comprehension × Extension • Preamble

Eight summers ago I hit on what struck me as a new insight into one of the most recalcitrant problems in Peirce’s semiotics and logic of science, namely, the relation between “the manner in which different representations stand for their … Continue reading

Posted in Abduction, C.S. Peirce, Comprehension, Deduction, Extension, Hypothesis, Icon Index Symbol, Induction, Inference, Information = Comprehension × Extension, Inquiry, Intension, Logic, Peirce's Categories, Pragmatic Semiotic Information, Pragmatism, Scientific Method, Semiotics, Sign Relations | Tagged , , , , , , , , , , , , , , , , , , | 3 Comments

Logical Graphs • Discussion 11

Re: Logical Graphs • Formal Development Re: Laws of Form • Lyle Anderson LA: What does it mean to assign a label or name to a node of the Logical Graph? In LoF, the variables of the algebra represent unknown … Continue reading

Posted in Amphecks, Animata, Boolean Algebra, Boolean Functions, C.S. Peirce, Cactus Graphs, Constraint Satisfaction Problems, Deduction, Diagrammatic Reasoning, Duality, Equational Inference, Graph Theory, Laws of Form, Logic, Logical Graphs, Mathematics, Minimal Negation Operators, Painted Cacti, Propositional Calculus, Propositional Equation Reasoning Systems, Relation Theory, Semiotics, Sign Relations, Spencer Brown, Topology, Visualization | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , | 4 Comments

Logical Graphs • Discussion 10

Re: Logical Graphs • Formal Development Re: Laws of Form • Armahedi Mahzar AM: GSB took J1 : (a(a)) =   as the first algebraic primitive and the second one is transposition so he only need only 2 primitives for … Continue reading

Posted in Amphecks, Animata, Boolean Algebra, Boolean Functions, C.S. Peirce, Cactus Graphs, Constraint Satisfaction Problems, Deduction, Diagrammatic Reasoning, Duality, Equational Inference, Graph Theory, Laws of Form, Logic, Logical Graphs, Mathematics, Minimal Negation Operators, Painted Cacti, Propositional Calculus, Propositional Equation Reasoning Systems, Relation Theory, Semiotics, Sign Relations, Spencer Brown, Topology, Visualization | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , | 4 Comments

Logical Graphs • Formal Development 8

Exemplary Proofs Using no more than the axioms and theorems recorded so far, it is possible to prove a multitude of much more complex theorems.  A number of all‑time favorites are linked below. Peirce’s Law Blog Series • (1) • … Continue reading

Posted in Animata, Boolean Algebra, Boolean Functions, C.S. Peirce, Cactus Graphs, Deduction, Equational Inference, Graph Theory, Laws of Form, Logic, Logical Graphs, Mathematics, Propositional Calculus, Propositional Equation Reasoning Systems, Semiotics, Spencer Brown, Visualization | Tagged , , , , , , , , , , , , , , , , | 4 Comments

Logical Graphs • Formal Development 7

Frequently Used Theorems (concl.) C3.  Dominant Form Theorem The third of the frequently used theorems of service to this survey is one Spencer Brown annotates as Consequence 3 (C3) or Integration.  A better mnemonic might be dominance and recession theorem (DART), but … Continue reading

Posted in Animata, Boolean Algebra, Boolean Functions, C.S. Peirce, Cactus Graphs, Deduction, Equational Inference, Graph Theory, Laws of Form, Logic, Logical Graphs, Mathematics, Propositional Calculus, Propositional Equation Reasoning Systems, Semiotics, Spencer Brown, Visualization | Tagged , , , , , , , , , , , , , , , , | 4 Comments

Logical Graphs • Formal Development 6

Frequently Used Theorems (cont.) C2.  Generation Theorem One theorem of frequent use goes under the nickname of the weed and seed theorem (WAST).  The proof is just an exercise in mathematical induction, once a suitable basis is laid down, and … Continue reading

Posted in Animata, Boolean Algebra, Boolean Functions, C.S. Peirce, Cactus Graphs, Deduction, Equational Inference, Graph Theory, Laws of Form, Logic, Logical Graphs, Mathematics, Propositional Calculus, Propositional Equation Reasoning Systems, Semiotics, Spencer Brown, Visualization | Tagged , , , , , , , , , , , , , , , , | 4 Comments

Logical Graphs • Formal Development 5

Frequently Used Theorems To familiarize ourselves with equational proofs in logical graphs let’s run though the proofs of a few basic theorems in the primary algebra. C1.  Double Negation Theorem The first theorem goes under the names of Consequence 1 (C1), … Continue reading

Posted in Animata, Boolean Algebra, Boolean Functions, C.S. Peirce, Cactus Graphs, Deduction, Equational Inference, Graph Theory, Laws of Form, Logic, Logical Graphs, Mathematics, Propositional Calculus, Propositional Equation Reasoning Systems, Semiotics, Spencer Brown, Visualization | Tagged , , , , , , , , , , , , , , , , | 4 Comments

Logical Graphs • Formal Development 4

Equational Inference All the initials have the form of equations.  This means the inference steps they license are reversible.  The proof annotation scheme employed below makes use of double bars to mark this fact, though it will often be left … Continue reading

Posted in Animata, Boolean Algebra, Boolean Functions, C.S. Peirce, Cactus Graphs, Deduction, Equational Inference, Graph Theory, Laws of Form, Logic, Logical Graphs, Mathematics, Propositional Calculus, Propositional Equation Reasoning Systems, Semiotics, Spencer Brown, Visualization | Tagged , , , , , , , , , , , , , , , , | 4 Comments

Logical Graphs • Formal Development 3

Logical Interpretation One way of assigning logical meaning to the initial equations is known as the entitative interpretation (En).  Under En, the axioms read as follows. Another way of assigning logical meaning to the initial equations is known as the existential interpretation … Continue reading

Posted in Animata, Boolean Algebra, Boolean Functions, C.S. Peirce, Cactus Graphs, Deduction, Equational Inference, Graph Theory, Laws of Form, Logic, Logical Graphs, Mathematics, Propositional Calculus, Propositional Equation Reasoning Systems, Semiotics, Spencer Brown, Visualization | Tagged , , , , , , , , , , , , , , , , | 4 Comments