Tag Archives: Logical Graphs

Logical Graphs • Formal Development 5

Frequently Used Theorems To familiarize ourselves with equational proofs in logical graphs let’s run though the proofs of a few basic theorems in the primary algebra. C1.  Double Negation Theorem The first theorem goes under the names of Consequence 1 … Continue reading

Posted in Animata, Boolean Algebra, Boolean Functions, C.S. Peirce, Cactus Graphs, Deduction, Diagrammatic Reasoning, Equational Inference, Graph Theory, Laws of Form, Logic, Logical Graphs, Mathematics, Painted Cacti, Peirce, Propositional Calculus, Propositional Equation Reasoning Systems, Semiotics, Spencer Brown, Visualization | Tagged , , , , , , , , , , , , , , , , , , , | 3 Comments

Logical Graphs • Formal Development 4

Equational Inference All the initials have the form of equations.  This means the inference steps they license are reversible.  The proof annotation scheme employed below makes use of double bars to mark this fact, though it will often be left … Continue reading

Posted in Animata, Boolean Algebra, Boolean Functions, C.S. Peirce, Cactus Graphs, Deduction, Diagrammatic Reasoning, Equational Inference, Graph Theory, Laws of Form, Logic, Logical Graphs, Mathematics, Painted Cacti, Peirce, Propositional Calculus, Propositional Equation Reasoning Systems, Semiotics, Spencer Brown, Visualization | Tagged , , , , , , , , , , , , , , , , , , , | 3 Comments

Logical Graphs • Formal Development 3

Logical Interpretation One way of assigning logical meaning to the initial equations is known as the entitative interpretation (En).  Under En, the axioms read as follows. Another way of assigning logical meaning to the initial equations is known as the existential interpretation … Continue reading

Posted in Animata, Boolean Algebra, Boolean Functions, C.S. Peirce, Cactus Graphs, Deduction, Diagrammatic Reasoning, Equational Inference, Graph Theory, Laws of Form, Logic, Logical Graphs, Mathematics, Painted Cacti, Peirce, Propositional Calculus, Propositional Equation Reasoning Systems, Semiotics, Spencer Brown, Visualization | Tagged , , , , , , , , , , , , , , , , , , , | 3 Comments

Logical Graphs • Formal Development 2

Axioms The formal system of logical graphs is defined by a foursome of formal equations, called initials when regarded purely formally, in abstraction from potential interpretations, and called axioms when interpreted as logical equivalences.  There are two arithmetic initials and … Continue reading

Posted in Animata, Boolean Algebra, Boolean Functions, C.S. Peirce, Cactus Graphs, Deduction, Diagrammatic Reasoning, Equational Inference, Graph Theory, Laws of Form, Logic, Logical Graphs, Mathematics, Painted Cacti, Peirce, Propositional Calculus, Propositional Equation Reasoning Systems, Semiotics, Spencer Brown, Visualization | Tagged , , , , , , , , , , , , , , , , , , , | 3 Comments

Logical Graphs • Formal Development 1

Logical graphs are next presented as a formal system by going back to the initial elements and developing their consequences in a systematic manner. Continue reading

Posted in Animata, Boolean Algebra, Boolean Functions, C.S. Peirce, Cactus Graphs, Deduction, Diagrammatic Reasoning, Equational Inference, Graph Theory, Laws of Form, Logic, Logical Graphs, Mathematics, Painted Cacti, Peirce, Propositional Calculus, Propositional Equation Reasoning Systems, Semiotics, Spencer Brown, Visualization | Tagged , , , , , , , , , , , , , , , , , , , | 3 Comments

Logical Graphs • Formal Development

Logical graphs are next presented as a formal system by going back to the initial elements and developing their consequences in a systematic manner. Continue reading

Posted in Animata, Boolean Algebra, Boolean Functions, C.S. Peirce, Cactus Graphs, Deduction, Equational Inference, Graph Theory, Laws of Form, Logic, Logical Graphs, Mathematics, Propositional Calculus, Propositional Equation Reasoning Systems, Semiotics, Spencer Brown, Visualization | Tagged , , , , , , , , , , , , , , , , | 35 Comments

Logical Graphs • Discussion 6

Re: Logical Graphs • First Impressions Re: Academia.edu • Robert Appleton RA: As a professional graphic designer and non-mathematician reading your two diagrams, I need to ask for a simpler statement of their purpose.  What do Fig 1 and Fig 2 represent … Continue reading

Posted in Amphecks, Animata, Boolean Algebra, Boolean Functions, C.S. Peirce, Cactus Graphs, Constraint Satisfaction Problems, Deduction, Diagrammatic Reasoning, Duality, Equational Inference, Graph Theory, Laws of Form, Logic, Logical Graphs, Mathematics, Minimal Negation Operators, Painted Cacti, Propositional Calculus, Propositional Equation Reasoning Systems, Relation Theory, Semiotics, Sign Relations, Spencer Brown, Topology, Visualization | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , | 5 Comments

Logical Graphs • Discussion 5

Re: Logical Graphs • First Impressions Re: Facebook • Daniel Everett DE: Nice discussion.  Development of icon-based reasoning As it happens, even though Peirce’s systems of logical graphs do have iconic features, their real power over other sorts of logical … Continue reading

Posted in Amphecks, Animata, Boolean Algebra, Boolean Functions, C.S. Peirce, Cactus Graphs, Constraint Satisfaction Problems, Deduction, Diagrammatic Reasoning, Duality, Equational Inference, Graph Theory, Laws of Form, Logic, Logical Graphs, Mathematics, Minimal Negation Operators, Painted Cacti, Propositional Calculus, Propositional Equation Reasoning Systems, Relation Theory, Semiotics, Sign Relations, Spencer Brown, Topology, Visualization | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , | 5 Comments

Logical Graphs • First Impressions

A logical graph is a graph-theoretic structure in one of the styles of graphical syntax that Charles Sanders Peirce developed for logic. Continue reading

Posted in Animata, Boolean Algebra, Boolean Functions, C.S. Peirce, Cactus Graphs, Deduction, Diagrammatic Reasoning, Equational Inference, Graph Theory, Laws of Form, Logic, Logical Graphs, Mathematics, Painted Cacti, Peirce, Propositional Calculus, Propositional Equation Reasoning Systems, Semiotics, Spencer Brown, Visualization | Tagged , , , , , , , , , , , , , , , , , , , | 30 Comments

Differential Logic • The Logic of Change and Difference

Differential logic is the logic of variation — the logic of change and difference. Differential logic is the component of logic whose object is the description of variation — the aspects of change, difference, distribution, and diversity — in universes … Continue reading

Posted in Animata, Boolean Difference Calculus, Boolean Functions, C.S. Peirce, Differential Logic, Differential Propositions, Discrete Dynamical Systems, Leibniz, Logic, Logical Graphs, Minimal Negation Operators, Visualization | Tagged , , , , , , , , , , , | 6 Comments