Tag Archives: Group Theory

Differential Propositional Calculus • 7

Special Classes of Propositions (concl.) Last and literally least in extent, we examine the family of singular propositions in a 3-dimensional universe of discourse. In our model of propositions as mappings of a universe of discourse to a set of … Continue reading

Posted in Amphecks, Boolean Functions, C.S. Peirce, Cactus Graphs, Category Theory, Change, Computational Complexity, Cybernetics, Differential Analytic Turing Automata, Differential Calculus, Differential Logic, Discrete Dynamics, Dynamical Systems, Equational Inference, Functional Logic, Gradient Descent, Graph Theory, Group Theory, Hologrammautomaton, Indicator Functions, Logic, Logical Graphs, Mathematical Models, Mathematics, Minimal Negation Operators, Painted Cacti, Peirce, Propositional Calculus, Propositional Equation Reasoning Systems, Time, Visualization | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 4 Comments

Differential Propositional Calculus • 6

Special Classes of Propositions (cont.) Next we take up the family of positive propositions and follow the same plan as before, tracing the rule of their formation in the case of a 3-dimensional universe of discourse. Positive Propositions In a … Continue reading

Posted in Amphecks, Boolean Functions, C.S. Peirce, Cactus Graphs, Category Theory, Change, Computational Complexity, Cybernetics, Differential Analytic Turing Automata, Differential Calculus, Differential Logic, Discrete Dynamics, Dynamical Systems, Equational Inference, Functional Logic, Gradient Descent, Graph Theory, Group Theory, Hologrammautomaton, Indicator Functions, Logic, Logical Graphs, Mathematical Models, Mathematics, Minimal Negation Operators, Painted Cacti, Peirce, Propositional Calculus, Propositional Equation Reasoning Systems, Time, Visualization | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 4 Comments

Differential Propositional Calculus • 5

Special Classes of Propositions (cont.) Let’s pause at this point and get a better sense of how our special classes of propositions are structured and how they relate to propositions in general.  We can do this by recruiting our visual … Continue reading

Posted in Amphecks, Boolean Functions, C.S. Peirce, Cactus Graphs, Category Theory, Change, Computational Complexity, Cybernetics, Differential Analytic Turing Automata, Differential Calculus, Differential Logic, Discrete Dynamics, Dynamical Systems, Equational Inference, Functional Logic, Gradient Descent, Graph Theory, Group Theory, Hologrammautomaton, Indicator Functions, Logic, Logical Graphs, Mathematical Models, Mathematics, Minimal Negation Operators, Painted Cacti, Peirce, Propositional Calculus, Propositional Equation Reasoning Systems, Time, Visualization | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 4 Comments

Differential Propositional Calculus • 4

Special Classes of Propositions Before moving on, let’s unpack some of the assumptions, conventions, and implications involved in the array of concepts and notations introduced above. A universe of discourse qualified by the logical features is a set plus the set … Continue reading

Posted in Amphecks, Boolean Functions, C.S. Peirce, Cactus Graphs, Category Theory, Change, Computational Complexity, Cybernetics, Differential Analytic Turing Automata, Differential Calculus, Differential Logic, Discrete Dynamics, Dynamical Systems, Equational Inference, Functional Logic, Gradient Descent, Graph Theory, Group Theory, Hologrammautomaton, Indicator Functions, Logic, Logical Graphs, Mathematical Models, Mathematics, Minimal Negation Operators, Painted Cacti, Peirce, Propositional Calculus, Propositional Equation Reasoning Systems, Time, Visualization | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 4 Comments

Differential Propositional Calculus • 3

Formal Development The preceding discussion outlined the ideas leading to the differential extension of propositional logic.  The next task is to lay out the concepts and terminology needed to describe various orders of differential propositional calculi. Elementary Notions Logical description … Continue reading

Posted in Amphecks, Boolean Functions, C.S. Peirce, Cactus Graphs, Category Theory, Change, Computational Complexity, Cybernetics, Differential Analytic Turing Automata, Differential Calculus, Differential Logic, Discrete Dynamics, Dynamical Systems, Equational Inference, Functional Logic, Gradient Descent, Graph Theory, Group Theory, Hologrammautomaton, Indicator Functions, Logic, Logical Graphs, Mathematical Models, Mathematics, Minimal Negation Operators, Painted Cacti, Peirce, Propositional Calculus, Propositional Equation Reasoning Systems, Time, Visualization | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 4 Comments

Differential Propositional Calculus • 2

Cactus Calculus Table 6 outlines a syntax for propositional calculus based on two types of logical connectives, both of variable -ary scope. A bracketed sequence of propositional expressions is taken to mean exactly one of the propositions is false, in … Continue reading

Posted in Amphecks, Boolean Functions, C.S. Peirce, Cactus Graphs, Category Theory, Change, Computational Complexity, Cybernetics, Differential Analytic Turing Automata, Differential Calculus, Differential Logic, Discrete Dynamics, Dynamical Systems, Equational Inference, Functional Logic, Gradient Descent, Graph Theory, Group Theory, Hologrammautomaton, Indicator Functions, Logic, Logical Graphs, Mathematical Models, Mathematics, Minimal Negation Operators, Painted Cacti, Peirce, Propositional Calculus, Propositional Equation Reasoning Systems, Time, Visualization | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 4 Comments

Differential Propositional Calculus • 1

A differential propositional calculus is a propositional calculus extended by a set of terms for describing aspects of change and difference, for example, processes taking place in a universe of discourse or transformations mapping a source universe to a target … Continue reading

Posted in Amphecks, Boolean Functions, C.S. Peirce, Cactus Graphs, Category Theory, Change, Computational Complexity, Cybernetics, Differential Analytic Turing Automata, Differential Calculus, Differential Logic, Discrete Dynamics, Dynamical Systems, Equational Inference, Functional Logic, Gradient Descent, Graph Theory, Group Theory, Hologrammautomaton, Indicator Functions, Logic, Logical Graphs, Mathematical Models, Mathematics, Minimal Negation Operators, Painted Cacti, Peirce, Propositional Calculus, Propositional Equation Reasoning Systems, Time, Visualization | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 4 Comments

Differential Propositional Calculus • Overview

The most fundamental concept in cybernetics is that of “difference”, either that two things are recognisably different or that one thing has changed with time. W. Ross Ashby • An Introduction to Cybernetics Here’s the outline of a sketch I … Continue reading

Posted in Amphecks, Boolean Functions, C.S. Peirce, Cactus Graphs, Category Theory, Change, Computational Complexity, Cybernetics, Differential Analytic Turing Automata, Differential Calculus, Differential Logic, Discrete Dynamics, Dynamical Systems, Equational Inference, Functional Logic, Gradient Descent, Graph Theory, Group Theory, Hologrammautomaton, Indicator Functions, Logic, Logical Graphs, Mathematical Models, Mathematics, Minimal Negation Operators, Painted Cacti, Peirce, Propositional Calculus, Propositional Equation Reasoning Systems, Time, Visualization | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 10 Comments

Peirce’s 1870 “Logic Of Relatives” • Discussion 2

Re: Ecology of Systems Thinking • RS • TM My previous comment summed up my observations of a general drift toward “absolutist and dyadic ways of thinking” in various communities of inquiry of interest to me over the past 20 … Continue reading

Posted in C.S. Peirce, Category Theory, Differential Logic, Duality, Dyadic Relations, Graph Theory, Group Theory, Logic, Logic of Relatives, Logical Graphs, Logical Matrices, Mathematics, Peirce, Peirce's Categories, Predicate Calculus, Propositional Calculus, Relation Theory, Semiotics, Sign Relations, Teridentity, Triadic Relations, Visualization | Tagged , , , , , , , , , , , , , , , , , , , , , | 5 Comments

Peirce’s 1870 “Logic Of Relatives” • Comment 2

In a recent post on a related topic I gave this assessment of our present situation: One of the more disconcerting developments, I might say “devolutions”, I’ve observed over the past 20 years has been the general slippage back to … Continue reading

Posted in C.S. Peirce, Category Theory, Differential Logic, Duality, Dyadic Relations, Graph Theory, Group Theory, Logic, Logic of Relatives, Logical Graphs, Logical Matrices, Mathematics, Peirce, Peirce's Categories, Predicate Calculus, Propositional Calculus, Relation Theory, Semiotics, Sign Relations, Teridentity, Triadic Relations, Visualization | Tagged , , , , , , , , , , , , , , , , , , , , , | 6 Comments