Re: Laws of Form • James Bowery
- JB:
- I’m interested in those who have approached the notion of self‑duality from the meta‑perspective of switching perspectives between Directed Cyclic Graphs of NiNAND and NiNOR gates (Ni for N‑Inputs à la boolean network theory). The burgeoning interest in what might be called “The Self‑Simulation Hypothesis” founded on the notion of self‑duality rather demands this meta‑perspective.
Hi James, it’s been a while … Picking up this thread again always leads me through a maze of reminiscence — I’m used to that — but it’s taking more time than usual to sort out what bears on the topics you raise, more from the richness of the embedding matrix than any lack of content … but I will keep at it … here’s a first bit …
Parametrized families of logical operators like the ones you mention are some of the first things I remember discussing with one of my former logic professors, Herb Hendry, who told me they are called “multigrade operators”. Herb taught in the philosophy department at Michigan State and became an early adopter of instructional technology for teaching logic, developing a software package by the name of CALL for Computer Assisted Logic Lessons. It was only natural that I would come to have many discussions with him about my own adventures in computing for logic.
Then as now I came at everything from a Peircean direction and I had early on learned about the operators Peirce described as the ampheck and its dual
— McCulloch would later refer to both as amphecks for reasons we’ll get to eventually — and others of my teachers called NNOR and NAND, respectively.
Making a long story as short as possible, the natural extensions of NAND and NNOR to finite numbers of variables are represented by logical graphs of the following forms.
Working under what amounts to Peirce’s existential interpretation, an expression of the form is a negation of a conjunction while an expression of the form
is a negation of a disjunction, which is also a conjunction of many negations.
For concreteness of orientation, the corresponding venn diagrams for the case where are shown below.
References
Resources
cc: Academia.edu • BlueSky • Laws of Form • Mathstodon • Research Gate
cc: Conceptual Graphs • Cybernetics • Structural Modeling • Systems Science

