Category Archives: Set Theory

Relation Theory • Discussion 1

Re: Cybernetics • Arthur Phillips Responding to what I’ll abductively interpret as a plea for relevance from the cybernetic galley, let me give a quick review of where we are in this many-oared expedition. Our reading of Ashby (see Survey … Continue reading

Posted in Algebra, Algebra of Logic, C.S. Peirce, Category Theory, Combinatorics, Discrete Mathematics, Duality, Dyadic Relations, Foundations of Mathematics, Graph Theory, Logic, Logic of Relatives, Mathematics, Peirce, Relation Theory, Semiotics, Set Theory, Sign Relational Manifolds, Sign Relations, Triadic Relations, Type Theory, Visualization | Tagged , , , , , , , , , , , , , , , , , , , , , | 9 Comments

Survey of Relation Theory • 4

In this Survey of blog and wiki posts on Relation Theory, relations are viewed from the perspective of combinatorics, in other words, as a topic in discrete mathematics, with special attention to finite structures and concrete set-theoretic constructions, many of … Continue reading

Posted in Algebra, Algebra of Logic, C.S. Peirce, Category Theory, Combinatorics, Discrete Mathematics, Duality, Dyadic Relations, Foundations of Mathematics, Graph Theory, Logic, Logic of Relatives, Mathematics, Peirce, Relation Theory, Semiotics, Set Theory, Sign Relational Manifolds, Sign Relations, Surveys, Triadic Relations, Triadicity, Type Theory | Tagged , , , , , , , , , , , , , , , , , , , , , , | 14 Comments

Indicator Functions • Discussion 1

Peter Smith, on his Logic Matters blog, asks the question, “What Is A Predicate?”, and considers a number of answers. There are of course other possible answers, and one I learned quite early on, arising very naturally in applying mathematical … Continue reading

Posted in Boole, Boolean Functions, C.S. Peirce, Category Theory, Indication, Indicator Functions, Logic, Mathematics, Peirce, Propositional Calculus, Propositional Equation Reasoning Systems, Set Theory, Venn Diagrams | Tagged , , , , , , , , , , , , | 1 Comment

Survey of Relation Theory • 3

In this Survey of blog and wiki posts on Relation Theory, relations are viewed from the perspective of combinatorics, in other words, as a topic in discrete mathematics, with special attention to finite structures and concrete set-theoretic constructions, many of … Continue reading

Posted in Algebra, Algebra of Logic, C.S. Peirce, Category Theory, Combinatorics, Discrete Mathematics, Duality, Dyadic Relations, Foundations of Mathematics, Graph Theory, Logic, Logic of Relatives, Mathematics, Peirce, Relation Theory, Semiotics, Set Theory, Sign Relational Manifolds, Sign Relations, Surveys, Triadic Relations, Triadicity, Type Theory | Tagged , , , , , , , , , , , , , , , , , , , , , , | 1 Comment

Survey of Relation Theory • 2

In this Survey of blog and wiki posts on Relation Theory, relations are viewed from the perspective of combinatorics, in other words, as a topic in discrete mathematics, with special attention to finite structures and concrete set-theoretic constructions, many of … Continue reading

Posted in Algebra, Algebra of Logic, C.S. Peirce, Category Theory, Combinatorics, Discrete Mathematics, Duality, Dyadic Relations, Foundations of Mathematics, Graph Theory, Logic, Logic of Relatives, Mathematics, Peirce, Relation Theory, Semiotics, Set Theory, Sign Relational Manifolds, Sign Relations, Surveys, Triadic Relations, Triadicity, Type Theory | Tagged , , , , , , , , , , , , , , , , , , , , , , | 3 Comments

Survey of Relation Theory • 1

In this Survey of blog and wiki posts on Relation Theory, relations are viewed from the perspective of combinatorics, in other words, as a topic in discrete mathematics, with special attention to finite structures and concrete set-theoretic constructions, many of … Continue reading

Posted in Algebra, Algebra of Logic, C.S. Peirce, Category Theory, Combinatorics, Discrete Mathematics, Duality, Dyadic Relations, Foundations of Mathematics, Graph Theory, Logic, Logic of Relatives, Mathematics, Peirce, Relation Theory, Semiotics, Set Theory, Sign Relational Manifolds, Sign Relations, Surveys, Triadic Relations, Triadicity, Type Theory | Tagged , , , , , , , , , , , , , , , , , , , , , , | 1 Comment

Objective Frameworks • Properties and Instances 1

Dealing with sign relations containing many types of signs — icons, indices, symbols, and more complex varieties — calls for a flexible and powerful organizational framework, one with the ability to grow and develop over time.  This is one of … Continue reading

Posted in C.S. Peirce, Icon Index Symbol, Inquiry, Interpretive Frameworks, Logic, Logic of Relatives, Mathematics, Objective Frameworks, Peirce, Relation Theory, Relative Membership, Semiotics, Set Theory, Sign Relations | Tagged , , , , , , , , , , , , , | 2 Comments

Relations & Their Relatives • Discussion 3

Re: Peirce List • Edwina Taborsky • Howard Pattee In the best mathematical terms, a triadic relation is a cartesian product of three sets together with a specified subset of that cartesian product. Alternatively, one may think of a triadic … Continue reading

Posted in C.S. Peirce, Cartesian Product, Category Theory, Dyadic Relations, Logic, Logic of Relatives, Mathematics, Peirce's Categories, Relation Theory, Rheme, Semiotics, Set Theory, Sign Relations, Triadic Relations, Triadicity | Tagged , , , , , , , , , , , , , , | 13 Comments

Indicator Functions • 1

Re: R.J. Lipton and K.W. Regan • Who Invented Boolean Functions? One of the things it helps to understand about 19th Century mathematicians, and those who built the bridge to the 20th, is that they were capable of high abstraction … Continue reading

Posted in Abstraction, Boole, Boolean Functions, C.S. Peirce, Category Theory, Characteristic Functions, Euler, Indicator Functions, John Venn, Logic, Mathematics, Peirce, Propositional Calculus, Set Theory, Venn Diagrams, Visualization | Tagged , , , , , , , , , , , , , , , | Leave a comment