Category Archives: Minimal Negation Operators

Logical Graphs • Discussion 5

Re: Logical Graphs • First Impressions Re: Facebook • Daniel Everett DE: Nice discussion.  Development of icon-based reasoning As it happens, even though Peirce’s systems of logical graphs do have iconic features, their real power over other sorts of logical … Continue reading

Posted in Amphecks, Animata, Boolean Algebra, Boolean Functions, C.S. Peirce, Cactus Graphs, Constraint Satisfaction Problems, Deduction, Diagrammatic Reasoning, Duality, Equational Inference, Graph Theory, Laws of Form, Logic, Logical Graphs, Mathematics, Minimal Negation Operators, Painted Cacti, Propositional Calculus, Propositional Equation Reasoning Systems, Relation Theory, Semiotics, Sign Relations, Spencer Brown, Topology, Visualization | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , | 5 Comments

Differential Logic • The Logic of Change and Difference

Differential logic is the logic of variation — the logic of change and difference. Differential logic is the component of logic whose object is the description of variation — the aspects of change, difference, distribution, and diversity — in universes … Continue reading

Posted in Animata, Boolean Difference Calculus, Boolean Functions, C.S. Peirce, Differential Logic, Differential Propositions, Discrete Dynamical Systems, Leibniz, Logic, Logical Graphs, Minimal Negation Operators, Visualization | Tagged , , , , , , , , , , , | 6 Comments

Logic Syllabus • Discussion 2

Re: Logic Syllabus Re: Laws of Form • John Mingers JM: Is [the “just one true” operator] the same or different to xor?  I have read that xor is true when an odd number of variables are true which would … Continue reading

Posted in Amphecks, Animata, Boolean Functions, C.S. Peirce, Cactus Graphs, Differential Logic, Functional Logic, Graph Theory, Laws of Form, Logic, Logical Graphs, Mathematics, Minimal Negation Operators, Painted Cacti, Peirce, Propositional Calculus, Propositional Equation Reasoning Systems, Semiotics, Venn Diagrams, Visualization | Tagged , , , , , , , , , , , , , , , , , , , | 5 Comments

Logic Syllabus • Discussion 1

Re: Logic Syllabus Re: Laws of Form • John Mingers JM: In a previous post you mentioned the minimal negation operator.  Is there also the converse of this, i.e. an operator which is true when exactly one of its arguments … Continue reading

Posted in Amphecks, Animata, Boolean Functions, C.S. Peirce, Cactus Graphs, Differential Logic, Functional Logic, Graph Theory, Laws of Form, Logic, Logical Graphs, Mathematics, Minimal Negation Operators, Painted Cacti, Peirce, Propositional Calculus, Propositional Equation Reasoning Systems, Semiotics, Venn Diagrams, Visualization | Tagged , , , , , , , , , , , , , , , , , , , | 5 Comments

Survey of Differential Logic • 5

This is a Survey of work in progress on Differential Logic, resources under development toward a more systematic treatment. Differential logic is the component of logic whose object is the description of variation — the aspects of change, difference, distribution, … Continue reading

Posted in Amphecks, Animata, Boolean Algebra, Boolean Functions, C.S. Peirce, Cactus Graphs, Category Theory, Change, Cybernetics, Differential Analytic Turing Automata, Differential Calculus, Differential Logic, Discrete Dynamics, Equational Inference, Frankl Conjecture, Functional Logic, Gradient Descent, Graph Theory, Hologrammautomaton, Indicator Functions, Inquiry Driven Systems, Leibniz, Logic, Logical Graphs, Mathematics, Minimal Negation Operators, Painted Cacti, Peirce, Propositional Calculus, Surveys, Time, Topology, Visualization, Zeroth Order Logic | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment

Theme One Program • Discussion 10

Re: Mathstodon • Seamus Bradley SB: I thought of a programming language where every function can only return one type:  the return type.  The return type is just a wrapper around a struct that contains the actual return value, but … Continue reading

Posted in Algorithms, Animata, Artificial Intelligence, Boolean Functions, C.S. Peirce, Cactus Graphs, Cognition, Computation, Constraint Satisfaction Problems, Data Structures, Differential Logic, Equational Inference, Formal Languages, Graph Theory, Inquiry Driven Systems, Laws of Form, Learning Theory, Logic, Logical Graphs, Mathematics, Minimal Negation Operators, Painted Cacti, Peirce, Propositional Calculus, Semiotics, Spencer Brown, Visualization | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , | 4 Comments

Survey of Theme One Program • 5

This is a Survey of blog and wiki posts relating to the Theme One Program I worked on all through the 1980s.  The aim was to develop fundamental algorithms and data structures for integrating empirical learning with logical reasoning.  I … Continue reading

Posted in Algorithms, Animata, Artificial Intelligence, Boolean Functions, C.S. Peirce, Cactus Graphs, Cognition, Computation, Constraint Satisfaction Problems, Data Structures, Differential Logic, Equational Inference, Formal Languages, Graph Theory, Inquiry Driven Systems, Laws of Form, Learning Theory, Logic, Logical Graphs, Mathematics, Minimal Negation Operators, Painted Cacti, Peirce, Propositional Calculus, Semiotics, Spencer Brown, Visualization | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , | 5 Comments

Survey of Animated Logical Graphs • 5

This is a Survey of blog and wiki posts on Logical Graphs, encompassing several families of graph-theoretic structures originally developed by Charles S. Peirce as graphical formal languages or visual styles of syntax amenable to interpretation for logical applications. Beginnings Logical Graphs … Continue reading

Posted in Amphecks, Animata, Boolean Algebra, Boolean Functions, C.S. Peirce, Cactus Graphs, Computational Complexity, Constraint Satisfaction Problems, Differential Logic, Equational Inference, Graph Theory, Laws of Form, Logic, Logical Graphs, Mathematics, Minimal Negation Operators, Model Theory, Painted Cacti, Peirce, Proof Theory, Propositional Calculus, Propositional Equation Reasoning Systems, Spencer Brown, Theorem Proving, Visualization | Tagged , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment

Differential Logic and Dynamic Systems • Overview

In modeling intelligent systems, whether we are trying to understand a natural system or engineer an artificial system, there has long been a tension or trade‑off between dynamic paradigms and symbolic paradigms.  Dynamic models take their cue from physics, using … Continue reading

Posted in Amphecks, Boolean Functions, C.S. Peirce, Cactus Graphs, Category Theory, Change, Computational Complexity, Cybernetics, Differential Analytic Turing Automata, Differential Calculus, Differential Logic, Discrete Dynamics, Dynamical Systems, Equational Inference, Functional Logic, Gradient Descent, Graph Theory, Group Theory, Hologrammautomaton, Indicator Functions, Logic, Logical Graphs, Mathematical Models, Mathematics, Minimal Negation Operators, Painted Cacti, Peirce, Propositional Calculus, Propositional Equation Reasoning Systems, Time, Visualization | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 6 Comments

Survey of Differential Logic • 4

This is a Survey of blog and wiki posts on Differential Logic, material I plan to develop toward a more compact and systematic account. Elements Differential Propositional Calculus Part 1 • Part 2 • Appendices • References Differential Logic • … Continue reading

Posted in Amphecks, Animata, Boolean Algebra, Boolean Functions, C.S. Peirce, Cactus Graphs, Category Theory, Change, Cybernetics, Differential Analytic Turing Automata, Differential Calculus, Differential Logic, Discrete Dynamics, Equational Inference, Frankl Conjecture, Functional Logic, Gradient Descent, Graph Theory, Hologrammautomaton, Indicator Functions, Inquiry Driven Systems, Leibniz, Logic, Logical Graphs, Mathematics, Minimal Negation Operators, Painted Cacti, Peirce, Propositional Calculus, Surveys, Time, Topology, Visualization, Zeroth Order Logic | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment