Differential Propositional Calculus • 25

Example 1. A Square Rigging (cont.)

Because the initial space X = \langle A \rangle is one‑dimensional we can easily fit the second order extension \mathrm{E}^2 X = \langle A, \mathrm{d}A, \mathrm{d}^2 A \rangle within the compass of a single venn diagram, charting the pair of converging trajectories as shown in the following Figure.

Example 1. The Anchor
\text{Example 1. The Anchor}

Resources

cc: Academia.eduCyberneticsStructural ModelingSystems Science
cc: Conceptual GraphsLaws of FormMathstodonResearch Gate

This entry was posted in Amphecks, Animata, Boolean Algebra, Boolean Functions, C.S. Peirce, Cactus Graphs, Category Theory, Change, Cybernetics, Differential Analytic Turing Automata, Differential Calculus, Differential Logic, Discrete Dynamics, Equational Inference, Functional Logic, Graph Theory, Hologrammautomaton, Indicator Functions, Inquiry Driven Systems, Leibniz, Logic, Logical Graphs, Mathematics, Minimal Negation Operators, Propositional Calculus, Time, Topology, Visualization and tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , . Bookmark the permalink.

4 Responses to Differential Propositional Calculus • 25

  1. Pingback: Survey of Differential Logic • 7 | Inquiry Into Inquiry

  2. Pingback: Survey of Differential Logic • 7 | Inquiry Into Inquiry

  3. Pingback: Survey of Differential Logic • 8 | Inquiry Into Inquiry

  4. Pingback: Survey of Differential Logic • 8 | Systems Community of Inquiry

Leave a comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.