Relations & Their Relatives • 3

Here are two ways of looking at the divisibility relation, a dyadic relation of fundamental importance in number theory.

Table 1 shows the first few ordered pairs of the relation on positive integers corresponding to the relative term, “divisor of”.  Thus, the ordered pair {i\!:\!j} appears in the relation if and only if {i} divides {j}, for which the usual notation is {i|j}.

Elementary Relatives for the “Divisor Of” Relation

Table 2 shows the same information in the form of a logical matrix.  This has a coefficient of {1} in row {i} and column {j} when {i|j}, otherwise it has a coefficient of {0}.  (The zero entries have been omitted for ease of reading.)

Logical Matrix for the “Divisor Of” Relation

Just as matrices in linear algebra represent linear transformations, these logical arrays and matrices represent logical transformations.

Resources

cc: Category TheoryCyberneticsOntologStructural ModelingSystems Science
cc: FB | Relation TheoryLaws of FormPeirce List

This entry was posted in C.S. Peirce, Category Theory, Dyadic Relations, Logic, Logic of Relatives, Logical Graphs, Mathematics, Nominalism, Peirce, Pragmatism, Realism, Relation Theory, Semiotics, Sign Relations, Triadic Relations, Visualization and tagged , , , , , , , , , , , , , , , . Bookmark the permalink.