Tag Archives: Visualization

Differential Propositional Calculus • 2

Casual Introduction (cont.) Now consider the situation represented by the venn diagram in Figure 2. Figure 2 differs from Figure 1 solely in the circumstance that the object is outside the region while the object is inside the region Nothing says our encountering … Continue reading

Posted in Amphecks, Animata, Boolean Algebra, Boolean Functions, C.S. Peirce, Cactus Graphs, Category Theory, Change, Cybernetics, Differential Analytic Turing Automata, Differential Calculus, Differential Logic, Discrete Dynamics, Equational Inference, Functional Logic, Graph Theory, Hologrammautomaton, Indicator Functions, Inquiry Driven Systems, Leibniz, Logic, Logical Graphs, Mathematics, Minimal Negation Operators, Propositional Calculus, Time, Topology, Visualization | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , | 4 Comments

Differential Propositional Calculus • 1

A differential propositional calculus is a propositional calculus extended by a set of terms for describing aspects of change and difference, for example, processes taking place in a universe of discourse or transformations mapping a source universe to a target … Continue reading

Posted in Amphecks, Animata, Boolean Algebra, Boolean Functions, C.S. Peirce, Cactus Graphs, Category Theory, Change, Cybernetics, Differential Analytic Turing Automata, Differential Calculus, Differential Logic, Discrete Dynamics, Equational Inference, Functional Logic, Graph Theory, Hologrammautomaton, Indicator Functions, Inquiry Driven Systems, Leibniz, Logic, Logical Graphs, Mathematics, Minimal Negation Operators, Propositional Calculus, Time, Topology, Visualization | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , | 4 Comments

Differential Propositional Calculus • Overview

The most fundamental concept in cybernetics is that of “difference”, either that two things are recognisably different or that one thing has changed with time. W. Ross Ashby • An Introduction to Cybernetics Differential logic is the component of logic … Continue reading

Posted in Amphecks, Animata, Boolean Algebra, Boolean Functions, C.S. Peirce, Cactus Graphs, Category Theory, Change, Cybernetics, Differential Analytic Turing Automata, Differential Calculus, Differential Logic, Discrete Dynamics, Equational Inference, Functional Logic, Graph Theory, Hologrammautomaton, Indicator Functions, Inquiry Driven Systems, Leibniz, Logic, Logical Graphs, Mathematics, Minimal Negation Operators, Propositional Calculus, Time, Topology, Visualization | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , | 3 Comments

Differential Logic • Overview

A reader once told me “venn diagrams are obsolete” and of course we all know how unwieldy they become as our universes of discourse expand beyond four or five dimensions.  Indeed, one of the first lessons I learned when I … Continue reading

Posted in Amphecks, Animata, Boolean Algebra, Boolean Functions, C.S. Peirce, Cactus Graphs, Category Theory, Change, Cybernetics, Differential Analytic Turing Automata, Differential Calculus, Differential Logic, Discrete Dynamics, Equational Inference, Functional Logic, Graph Theory, Hologrammautomaton, Indicator Functions, Inquiry Driven Systems, Leibniz, Logic, Logical Graphs, Mathematics, Minimal Negation Operators, Propositional Calculus, Time, Topology, Visualization | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , | 4 Comments

Logical Graphs • Discussion 11

Re: Logical Graphs • Formal Development Re: Laws of Form • Lyle Anderson LA: What does it mean to assign a label or name to a node of the Logical Graph? In LoF, the variables of the algebra represent unknown … Continue reading

Posted in Amphecks, Animata, Boolean Algebra, Boolean Functions, C.S. Peirce, Cactus Graphs, Constraint Satisfaction Problems, Deduction, Diagrammatic Reasoning, Duality, Equational Inference, Graph Theory, Laws of Form, Logic, Logical Graphs, Mathematics, Minimal Negation Operators, Painted Cacti, Propositional Calculus, Propositional Equation Reasoning Systems, Relation Theory, Semiotics, Sign Relations, Spencer Brown, Topology, Visualization | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , | 4 Comments

Logical Graphs • Discussion 10

Re: Logical Graphs • Formal Development Re: Laws of Form • Armahedi Mahzar AM: GSB took J1 : (a(a)) =   as the first algebraic primitive and the second one is transposition so he only need only 2 primitives for … Continue reading

Posted in Amphecks, Animata, Boolean Algebra, Boolean Functions, C.S. Peirce, Cactus Graphs, Constraint Satisfaction Problems, Deduction, Diagrammatic Reasoning, Duality, Equational Inference, Graph Theory, Laws of Form, Logic, Logical Graphs, Mathematics, Minimal Negation Operators, Painted Cacti, Propositional Calculus, Propositional Equation Reasoning Systems, Relation Theory, Semiotics, Sign Relations, Spencer Brown, Topology, Visualization | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , | 4 Comments

Logical Graphs • Formal Development 8

Exemplary Proofs Using no more than the axioms and theorems recorded so far, it is possible to prove a multitude of much more complex theorems.  A number of all‑time favorites are linked below. Peirce’s Law Blog Series • (1) • … Continue reading

Posted in Animata, Boolean Algebra, Boolean Functions, C.S. Peirce, Cactus Graphs, Deduction, Equational Inference, Graph Theory, Laws of Form, Logic, Logical Graphs, Mathematics, Propositional Calculus, Propositional Equation Reasoning Systems, Semiotics, Spencer Brown, Visualization | Tagged , , , , , , , , , , , , , , , , | 4 Comments

Logical Graphs • Formal Development 7

Frequently Used Theorems (concl.) C3.  Dominant Form Theorem The third of the frequently used theorems of service to this survey is one Spencer Brown annotates as Consequence 3 (C3) or Integration.  A better mnemonic might be dominance and recession theorem (DART), but … Continue reading

Posted in Animata, Boolean Algebra, Boolean Functions, C.S. Peirce, Cactus Graphs, Deduction, Equational Inference, Graph Theory, Laws of Form, Logic, Logical Graphs, Mathematics, Propositional Calculus, Propositional Equation Reasoning Systems, Semiotics, Spencer Brown, Visualization | Tagged , , , , , , , , , , , , , , , , | 4 Comments

Logical Graphs • Formal Development 6

Frequently Used Theorems (cont.) C2.  Generation Theorem One theorem of frequent use goes under the nickname of the weed and seed theorem (WAST).  The proof is just an exercise in mathematical induction, once a suitable basis is laid down, and … Continue reading

Posted in Animata, Boolean Algebra, Boolean Functions, C.S. Peirce, Cactus Graphs, Deduction, Equational Inference, Graph Theory, Laws of Form, Logic, Logical Graphs, Mathematics, Propositional Calculus, Propositional Equation Reasoning Systems, Semiotics, Spencer Brown, Visualization | Tagged , , , , , , , , , , , , , , , , | 4 Comments

Logical Graphs • Formal Development 5

Frequently Used Theorems To familiarize ourselves with equational proofs in logical graphs let’s run though the proofs of a few basic theorems in the primary algebra. C1.  Double Negation Theorem The first theorem goes under the names of Consequence 1 (C1), … Continue reading

Posted in Animata, Boolean Algebra, Boolean Functions, C.S. Peirce, Cactus Graphs, Deduction, Equational Inference, Graph Theory, Laws of Form, Logic, Logical Graphs, Mathematics, Propositional Calculus, Propositional Equation Reasoning Systems, Semiotics, Spencer Brown, Visualization | Tagged , , , , , , , , , , , , , , , , | 4 Comments