Logical Graphs • Formal Development 1

Logical graphs are next presented as a formal system by going back to the initial elements and developing their consequences in a systematic manner.

Formal Development

Logical Graphs • First Impressions gives an informal introduction to the initial elements of logical graphs and hopefully supplies the reader with an intuitive sense of their motivation and rationale.

The next order of business is to give the precise axioms used to develop the formal system of logical graphs.  The axioms derive from C.S. Peirce’s various systems of graphical syntax via the calculus of indications described in Spencer Brown’s Laws of Form.  The formal proofs to follow will use a variation of Spencer Brown’s annotation scheme to mark each step of the proof according to which axiom is called to license the corresponding step of syntactic transformation, whether it applies to graphs or to strings.

Resources

cc: FB | Logical GraphsLaws of FormMathstodonAcademia.edu
cc: Conceptual GraphsCyberneticsStructural ModelingSystems Science

This entry was posted in Animata, Boolean Algebra, Boolean Functions, C.S. Peirce, Cactus Graphs, Deduction, Equational Inference, Graph Theory, Laws of Form, Logic, Logical Graphs, Mathematics, Propositional Calculus, Propositional Equation Reasoning Systems, Semiotics, Spencer Brown, Visualization and tagged , , , , , , , , , , , , , , , , . Bookmark the permalink.

4 Responses to Logical Graphs • Formal Development 1

  1. Pingback: Survey of Animated Logical Graphs • 7 | Inquiry Into Inquiry

  2. Pingback: Survey of Animated Logical Graphs • 7 | Inquiry Into Inquiry

  3. Pingback: Survey of Animated Logical Graphs • 8 | Inquiry Into Inquiry

  4. Pingback: Survey of Animated Logical Graphs • 8 | Systems Community of Inquiry

Leave a comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.