Logical Graphs • First Impressions 9

Quick Tour of the Neighborhood

This much preparation allows us to take up the founding axioms or initial equations which determine the entire system of logical graphs.

Primary Arithmetic as Semiotic System

Though it may not seem too exciting, logically speaking, there are many reasons to make oneself at home with the system of forms represented indifferently, topologically speaking, by rooted trees, balanced strings of parentheses, and finite sets of non‑intersecting simple closed curves in the plane.

  • For one thing it gives us a non‑trivial example of a sign domain on which to cut our semiotic teeth, non‑trivial in the sense that it contains a countable infinity of signs.
  • In addition it allows us to study a simple form of computation recognizable as a species of semiosis or sign‑transforming process.

This space of forms, along with the pair of axioms which divide it into two formal equivalence classes, is what Spencer Brown called the primary arithmetic.

Resources

cc: FB | Logical GraphsLaws of FormMathstodonAcademia.edu
cc: Conceptual GraphsCyberneticsStructural ModelingSystems Science

This entry was posted in Animata, Boolean Algebra, Boolean Functions, C.S. Peirce, Cactus Graphs, Deduction, Equational Inference, Graph Theory, Laws of Form, Logic, Logical Graphs, Mathematics, Propositional Calculus, Propositional Equation Reasoning Systems, Semiotics, Spencer Brown, Visualization and tagged , , , , , , , , , , , , , , , , . Bookmark the permalink.

4 Responses to Logical Graphs • First Impressions 9

  1. Pingback: Survey of Animated Logical Graphs • 7 | Inquiry Into Inquiry

  2. Pingback: Survey of Animated Logical Graphs • 7 | Inquiry Into Inquiry

  3. Pingback: Survey of Animated Logical Graphs • 8 | Inquiry Into Inquiry

  4. Pingback: Survey of Animated Logical Graphs • 8 | Systems Community of Inquiry

Leave a comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.