Work ䷸

Differential Logic • Overview

PNG 5.0

\text{Conjunction}~ pq : X \to \mathbb{B}

Conjunction pq : X → B
\text{Conjunction}~ pq : X \to \mathbb{B}

\text{Tacit Extension}~ \boldsymbol\varepsilon (pq) : \mathrm{E}X \to \mathbb{B}

Tacit Extension ε(pq) : EX → B
\text{Tacit Extension}~ \boldsymbol\varepsilon (pq) : \mathrm{E}X \to \mathbb{B}

\text{Enlargement}~ \mathrm{E}(pq) : \mathrm{E}X \to \mathbb{B}

Enlargement E(pq) : EX → B
\text{Enlargement}~ \mathrm{E}(pq) : \mathrm{E}X \to \mathbb{B}

\text{Difference}~ \mathrm{D}(pq) : \mathrm{E}X \to \mathbb{B}

Difference D(pq) : EX → B
\text{Difference}~ \mathrm{D}(pq) : \mathrm{E}X \to \mathbb{B}

\text{Tangent Map}~ \mathrm{d}(pq) : \mathrm{E}X \to \mathbb{B}

Tangent Map d(pq) : EX → B
\text{Tangent Map}~ \mathrm{d}(pq) : \mathrm{E}X \to \mathbb{B}

\text{Remainder}~ \mathrm{r}(pq) : \mathrm{E}X \to \mathbb{B}

Remainder r(pq) : EX → B
\text{Remainder}~ \mathrm{r}(pq) : \mathrm{E}X \to \mathbb{B}

PNG 2.0

Table A3. Ef Expanded over Ordinary Variables {p, q} 2.0

Table A4. Ef Expanded over Differential Variables {dp, dq} 2.0

PNG 1.0

Table A1. Propositional Forms on Two Variables (Index Order) 1.0

Table A2. Propositional Forms on Two Variables (Orbit Order) 1.0

Table A3. Ef Expanded over Ordinary Variables {p, q} 1.0

Table A4. Ef Expanded over Differential Variables {dp, dq} 1.0

Table A5. Df Expanded over Ordinary Variables {p, q} 1.0

Table A6. Df Expanded over Differential Variables {dp, dq} 1.0