# Work ䷤

## Functional Logic • Inquiry and Analogy • 17

### Syllogistic Premisses as Higher Order Indicator Functions

#### PNG 4.0

$\text{Syllogistic Premisses as Higher Order Indicator Functions}$

#### PNG 3.0

$\text{Syllogistic Premisses as Higher Order Indicator Functions}$

#### PNG 2.0

$\text{Syllogistic Premisses as Higher Order Indicator Functions}$

#### PNG 1.0

$\text{Syllogistic Premisses as Higher Order Indicator Functions}$

#### HTML + LaTeX

$\text{Syllogistic Premisses as Higher Order Indicator Functions}$

$\begin{array}{clcl} \mathrm{A} & \text{Universal Affirmative} & \text{All}~ u ~\text{is}~ v & \text{Indicator of}~ u \texttt{(} v \texttt{)} = 0 \\[4pt] \mathrm{E} & \text{Universal Negative} & \text{All}~ u ~\text{is}~ \texttt{(} v \texttt{)} & \text{Indicator of}~ u \cdot v = 0 \\[4pt] \mathrm{I} & \text{Particular Affirmative} & \text{Some}~ u ~\text{is}~ v & \text{Indicator of}~ u \cdot v = 1 \\[4pt] \mathrm{O} & \text{Particular Negative} & \text{Some}~ u ~\text{is}~ \texttt{(} v \texttt{)} & \text{Indicator of}~ u \texttt{(} v \texttt{)} = 1 \end{array}$