Work ䷎

Peirce’s 1870 “Logic of Relatives” • Comment 11.7

PNG

Display 1

Display 1

Display 2

Display 2

Display 3

Display 3

Display 4

Display 4

HTML + LaTeX

Display 1

L_{a @ j} = \{ (x_1, \ldots, x_j, \ldots, x_k) \in L : x_j = a \}.

Display 2

\begin{array}{lllll}  u \star L & = & L_{u @ X} & = & L_{u @ 1}  \\[6pt]  L \star v & = & L_{v @ Y} & = & L_{v @ 2}  \end{array}

Display 3

\begin{array}{lll}  u \star L & = & L_{u @ X}  \\[6pt]  & = & \{ (u, y) \in L \}  \\[6pt]  & = & \text{all pairs in}~ L \subseteq X \times Y ~\text{with}~ u ~\text{in}~ X.  \\[9pt]  L \star v & = & L_{v @ Y}  \\[6pt]  & = & \{ (x, v) \in L \}  \\[6pt]  & = & \text{all pairs in}~ L \subseteq X \times Y ~\text{with}~ v ~\text{in}~ Y.  \end{array}

Display 4

\begin{array}{lll}  u \cdot L & = & \mathrm{proj}_2 (u \star L)  \\[6pt]  & = & \{ y \in Y : (u, y) \in L \}  \\[6pt]  & = & \text{all points in}~ Y ~\text{which are}~ L\text{-related to}~ u ~\text{in}~ X.  \\[9pt]  L \cdot v & = & \mathrm{proj}_1 (L \star v)  \\[6pt]  & = & \{ x \in X : (x, v) \in L \}  \\[6pt]  & = & \text{all points in}~ X ~\text{which are}~ L\text{-related to}~ v ~\text{in}~ Y.  \end{array}

HTML + JPG + LaTeX

Dyadic Relation E

Dyadic Relation E
\text{Figure 35. Dyadic Relation}~ E

Local Flag E_{3 @ X}

Local Flag E_{3 @ X}
\text{Figure 36. Local Flag}~ E_{3 @ X}

Local Flag E_{2 @ Y}

Local Flag E_{2 @ Y}
\text{Figure 37. Local Flag}~ E_{2 @ Y}