# Work ䷂

## Peirce’s 1870 “Logic of Relatives” • Comment 9.6

### HTML + JPG + LaTeX

#### Example 1

$\mathbf{1,}\mathbf{1} ~=~ \mathbf{1}$

$\text{anything that is anything} ~=~ \text{anything}$

$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix}1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1\end{bmatrix} = \begin{bmatrix}1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1\end{bmatrix}$

#### Example 2

$\mathbf{1,}\mathrm{m} ~=~ \mathrm{m}$

$\text{anything that is a man} ~=~ \text{man}$

$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix}0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1\end{bmatrix} = \begin{bmatrix}0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1\end{bmatrix}$

#### Example 3

$\mathrm{m,}\mathbf{1} ~=~ \mathrm{m}$

$\text{man that is anything} ~=~ \text{man}$

$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix}1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1\end{bmatrix} = \begin{bmatrix}0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1\end{bmatrix}$

#### Example 4

$\mathrm{m,}\mathrm{n} ~=~ \text{man that is a noble}$

$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix}0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1\end{bmatrix} = \begin{bmatrix}0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1\end{bmatrix}$

#### Example 5

$\mathrm{n,}\mathrm{m} ~=~ \text{noble that is a man}$

$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix}0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1\end{bmatrix} = \begin{bmatrix}0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1\end{bmatrix}$