# Work ψ

## Peirce’s 1870 “Logic of Relatives” • Comment 9.4

### LaTeX

#### Absolute Terms 1 M N W

$\begin{array}{*{17}{l}} \mathbf{1} & = & \text{anything} & = & \mathrm{B} & +\!\!, & \mathrm{C} & +\!\!, & \mathrm{D} & +\!\!, & \mathrm{E} & +\!\!, & \mathrm{I} & +\!\!, & \mathrm{J} & +\!\!, & \mathrm{O} \\[6pt] \mathrm{m} & = & \text{man} & = & \mathrm{C} & +\!\!, & \mathrm{I} & +\!\!, & \mathrm{J} & +\!\!, & \mathrm{O} \\[6pt] \mathrm{n} & = & \text{noble} & = & \mathrm{C} & +\!\!, & \mathrm{D} & +\!\!, & \mathrm{O} \\[6pt] \mathrm{w} & = & \text{woman} & = & \mathrm{B} & +\!\!, & \mathrm{D} & +\!\!, & \mathrm{E} \end{array}$

#### Diagonal Extensions 1 M N W

$\begin{array}{lll} \mathbf{1,} & = & \text{anything that is}\, \underline{~~~~} \\[6pt] & = & \mathrm{B\!:\!B} ~+\!\!,~ \mathrm{C\!:\!C} ~+\!\!,~ \mathrm{D\!:\!D} ~+\!\!,~ \mathrm{E\!:\!E} ~+\!\!,~ \mathrm{I\!:\!I} ~+\!\!,~ \mathrm{J\!:\!J} ~+\!\!,~ \mathrm{O\!:\!O} \\[9pt] \mathrm{m,} & = & \text{man that is}\, \underline{~~~~} \\[6pt] & = & \mathrm{C\!:\!C} ~+\!\!,~ \mathrm{I\!:\!I} ~+\!\!,~ \mathrm{J\!:\!J} ~+\!\!,~ \mathrm{O\!:\!O} \\[9pt] \mathrm{n,} & = & \text{noble that is}\, \underline{~~~~} \\[6pt] & = & \mathrm{C\!:\!C} ~+\!\!,~ \mathrm{D\!:\!D} ~+\!\!,~ \mathrm{O\!:\!O} \\[9pt] \mathrm{w,} & = & \text{woman that is}\, \underline{~~~~} \\[6pt] & = & \mathrm{B\!:\!B} ~+\!\!,~ \mathrm{D\!:\!D} ~+\!\!,~ \mathrm{E\!:\!E} \end{array}$

#### Commutative Products M N W

$\begin{array}{lllll} \mathrm{m},\!\mathrm{n} & = & \text{man that is noble} & = & \mathrm{C} ~+\!\!,~ \mathrm{O} \\[6pt] \mathrm{n},\!\mathrm{m} & = & \text{noble that is a man} & = & \mathrm{C} ~+\!\!,~ \mathrm{O} \\[6pt] \mathrm{w},\!\mathrm{n} & = & \text{woman that is noble} & = & \mathrm{D} \\[6pt] \mathrm{n},\!\mathrm{w} & = & \text{noble that is a woman} & = & \mathrm{D} \end{array}$