Work ψ

Peirce’s 1870 “Logic of Relatives” • Comment 9.4

PNG

Absolute Terms 1 M N W

Absolute Terms 1 M N W

LaTeX

Absolute Terms 1 M N W

\begin{array}{*{17}{l}}  \mathbf{1} & = & \text{anything} & = &  \mathrm{B} & +\!\!, &  \mathrm{C} & +\!\!, &  \mathrm{D} & +\!\!, &  \mathrm{E} & +\!\!, &  \mathrm{I} & +\!\!, &  \mathrm{J} & +\!\!, &  \mathrm{O}  \\[6pt]  \mathrm{m} & = & \text{man} & = &  \mathrm{C} & +\!\!, &  \mathrm{I} & +\!\!, &  \mathrm{J} & +\!\!, &  \mathrm{O}  \\[6pt]  \mathrm{n} & = & \text{noble} & =  &  \mathrm{C} & +\!\!, &  \mathrm{D} & +\!\!, &  \mathrm{O}  \\[6pt]  \mathrm{w} & = & \text{woman} & = &  \mathrm{B} & +\!\!, &  \mathrm{D} & +\!\!, &  \mathrm{E}  \end{array}

Diagonal Extensions 1 M N W

\begin{array}{lll}  \mathbf{1,} & = & \text{anything that is}\, \underline{~~~~}  \\[6pt]  & = & \mathrm{B\!:\!B} ~+\!\!,~ \mathrm{C\!:\!C} ~+\!\!,~ \mathrm{D\!:\!D} ~+\!\!,~ \mathrm{E\!:\!E} ~+\!\!,~ \mathrm{I\!:\!I} ~+\!\!,~ \mathrm{J\!:\!J} ~+\!\!,~ \mathrm{O\!:\!O}  \\[9pt]  \mathrm{m,} & = & \text{man that is}\, \underline{~~~~}  \\[6pt]  & = & \mathrm{C\!:\!C} ~+\!\!,~ \mathrm{I\!:\!I} ~+\!\!,~ \mathrm{J\!:\!J} ~+\!\!,~ \mathrm{O\!:\!O}  \\[9pt]  \mathrm{n,} & = & \text{noble that is}\, \underline{~~~~}  \\[6pt]  & = & \mathrm{C\!:\!C} ~+\!\!,~ \mathrm{D\!:\!D} ~+\!\!,~ \mathrm{O\!:\!O}  \\[9pt]  \mathrm{w,} & = & \text{woman that is}\, \underline{~~~~}  \\[6pt]  & = & \mathrm{B\!:\!B} ~+\!\!,~ \mathrm{D\!:\!D} ~+\!\!,~ \mathrm{E\!:\!E}  \end{array}

Commutative Products M N W

\begin{array}{lllll}  \mathrm{m},\!\mathrm{n}  & = & \text{man that is noble}  & = & \mathrm{C} ~+\!\!,~ \mathrm{O}  \\[6pt]  \mathrm{n},\!\mathrm{m}  & = & \text{noble that is a man}  & = & \mathrm{C} ~+\!\!,~ \mathrm{O}  \\[6pt]  \mathrm{w},\!\mathrm{n}  & = & \text{woman that is noble}  & = & \mathrm{D}  \\[6pt]  \mathrm{n},\!\mathrm{w}  & = & \text{noble that is a woman}  & = & \mathrm{D}  \end{array}