Work π

Dyadic Relations • Divisibility

LaTeX

\begin{array}{|c||*{11}{c}|}  \multicolumn{12}{c}{\text{Table 1. Elementary Relatives for the ``Divisor Of" Relation}} \\[4pt]  \hline  i|j &1&2&3&4&5&6&7&8&9&10&\ldots \\  \hline\hline  1&1\!\!:\!\!1&1\!:\!2&1\!:\!3&1\!:\!4&1\!:\!5&1\!:\!6&1\!:\!7&1\!:\!8&1\!:\!9&1\!:\!10&\dots \\  2&&2\!:\!2&&2\!:\!4&&2\!:\!6&&2\!:\!8&&2\!:\!10&\dots \\  3&&&3\!:\!3&&&3\!:\!6&&&3\!:\!9&&\dots \\  4&&&&4\!:\!4&&&&4\!:\!8&&&\dots \\  5&&&&&5\!:\!5&&&&&5\!:\!10&\dots \\  6&&&&&&6\!:\!6&&&&&\dots \\  7&&&&&&&7\!:\!7&&&&\dots \\  8&&&&&&&&8\!:\!8&&&\dots \\  9&&&&&&&&&9\!:\!9&&\dots \\  10&&&&&&&&&&10\!:\!10&\dots \\  \ldots&\ldots&\ldots&\ldots&\ldots&\ldots&  \ldots&\ldots&\ldots&\ldots&\ldots&\ldots \\  \hline  \end{array}


\begin{array}{|c||*{11}{c}|}  \multicolumn{12}{c}{\text{Table 2. Logical Matrix for the ``Divisor Of" Relation}} \\[4pt]  \hline  i|j &1&2&3&4&5&6&7&8&9&10&\ldots \\  \hline\hline  1&1&1&1&1&1&1&1&1&1&1&\dots \\  2& &1& &1& &1& &1& &1&\dots \\  3& & &1& & &1& & &1& &\dots \\  4& & & &1& & & &1& & &\dots \\  5& & & & &1& & & & &1&\dots \\  6& & & & & &1& & & & &\dots \\  7& & & & & & &1& & & &\dots \\  8& & & & & & & &1& & &\dots \\  9& & & & & & & & &1& &\dots \\  10&& & & & & & & & &1&\dots \\  \ldots&\ldots&\ldots&\ldots&\ldots&\ldots&  \ldots&\ldots&\ldots&\ldots&\ldots&\ldots \\  \hline  \end{array}

PNG

Elementary Relatives for the “Divisor Of” Relation


Logical Matrix for the “Divisor Of” Relation