# Work ν

## Relation Theory

### Six Ways of Looking at a Triadic Relation

#### LaTeX $A ~\mathrm{gives}~ B ~\mathrm{to}~ C$ $\begin{array}{lll} A ~\mathrm{gives}~ B ~\mathrm{to}~ C & \qquad & A ~\mathrm{benefits}~ C ~\mathrm{with}~ B \\ B ~\mathrm{enriches}~ C ~\mathrm{at~expense~of}~ A & \qquad & C ~\mathrm{receives}~ B ~\mathrm{from}~ A \\ C ~\mathrm{thanks}~ A ~\mathrm{for}~ B & \qquad & B ~\mathrm{leaves}~ A ~\mathrm{for}~ C \end{array}$

#### PNG ## Truth Tables

### Self-Dual Logical Graphs

#### LaTeX $\begin{array}{|c|c||c|c|c|c|} \multicolumn{6}{c}{\text{Self-Dual Logical Graphs}} \\[2pt] \hline x & y & f_{12} & f_{10} & f_{3} & f_{5} \\ ~ & ~ & x & y & \texttt{(}x\texttt{)} & \texttt{(}y\texttt{)} \\ \hline\hline 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 & 0 \\ \hline \end{array}$

#### PNG ### Constants and Amphecks

#### LaTeX $\begin{array}{|c|c||c|c||c|c|} \multicolumn{6}{c}{\text{Constants and Amphecks}} \\[2pt] \hline x & y & f_{15} & f_{0} & f_{7} & f_{1} \\ \hline\hline 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ \hline\hline \multicolumn{2}{|c||}{\text{Ex}} & ~ & ~ \texttt{( )} ~ & \texttt{(} xy \texttt{)} & \texttt{(} x \texttt{)(} y \texttt{)} \\ \multicolumn{2}{|c||}{\text{En}} & ~ \texttt{( )} ~ & ~ & \texttt{(} x \texttt{)(} y \texttt{)} & \texttt{(} xy \texttt{)} \\ \hline \end{array}$

#### PNG 