# Work β

## Logical Graphs • Entitative and Existential Interpretations

### Index Order

#### PNG

$\text{Logical Graphs} \stackrel{_\bullet}{} \text{Entitative and Existential Interpretations}$

#### HTML + JPG + LaTeX

Logical Graphs • Entitative and Existential Interpretations
$\text{Logical Graph}$ $\text{Entitative Interpretation}$ $\text{Existential Interpretation}$
$\text{true}$ $\text{false}$
$\texttt{(} ~ \texttt{)}$ $f_{15}$ $f_{0}$
$\lnot x \lor \lnot y$ $\lnot x \land \lnot y$
$\texttt{(} x \texttt{)(} y \texttt{)}$ $f_{7}$ $f_{1}$
$x \Rightarrow y$ $x \nLeftarrow y$
$\texttt{(} x \texttt{)} y$ $f_{11}$ $f_{2}$
$\lnot x$ $\lnot x$
$\texttt{(} x \texttt{)}$ $f_{3}$ $f_{3}$
$x \Leftarrow y$ $x \nRightarrow y$
$x \texttt{(} y \texttt{)}$ $f_{13}$ $f_{4}$
$\lnot y$ $\lnot y$
$\texttt{(} y \texttt{)}$ $f_{5}$ $f_{5}$
$x = y$ $x \ne y$
$\texttt{(} x \texttt{,} y \texttt{)}$ $f_{9}$ $f_{6}$
$\lnot (x \lor y)$ $\lnot (x \land y)$
$\texttt{(} x y \texttt{)}$ $f_{1}$ $f_{7}$
$x \lor y$ $x \land y$
$x y$ $f_{14}$ $f_{8}$
$x \ne y$ $x = y$
$\texttt{((} x \texttt{,} y \texttt{))}$ $f_{6}$ $f_{9}$
$y$ $y$
$y$ $f_{10}$ $f_{10}$
$x \nLeftarrow y$ $x \Rightarrow y$
$\texttt{(} x \texttt{(} y \texttt{))}$ $f_{2}$ $f_{11}$
$x$ $x$
$x$ $f_{12}$ $f_{12}$
$x \nRightarrow y$ $x \Leftarrow y$
$\texttt{((} x \texttt{)} y \texttt{)}$ $f_{4}$ $f_{13}$
$x \land y$ $x \lor y$
$\texttt{((} x \texttt{)(} y \texttt{))}$ $f_{8}$ $f_{14}$
$\text{false}$ $\text{true}$
$f_{0}$ $f_{15}$